Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = fast field cycling NMR relaxometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7079 KB  
Article
Molecular Dynamics, Dielectric Properties, and Textures of Protonated and Selectively Deuterated 4′-Pentyl-4-biphenylcarbonitrile Liquid Crystal
by Jadwiga Tritt-Goc, Magdalena Knapkiewicz, Piotr Harmata, Jakub Herman and Michał Bielejewski
Materials 2024, 17(20), 5106; https://doi.org/10.3390/ma17205106 - 19 Oct 2024
Cited by 1 | Viewed by 1653
Abstract
Using liquid crystals in near-infrared applications suffers from effects related to processes like parasitic absorption and high sensitivity to UV-light exposure. One way of managing these disadvantages is to use deuterated systems. The combined 1H and 2H nuclear magnetic resonance relaxometry [...] Read more.
Using liquid crystals in near-infrared applications suffers from effects related to processes like parasitic absorption and high sensitivity to UV-light exposure. One way of managing these disadvantages is to use deuterated systems. The combined 1H and 2H nuclear magnetic resonance relaxometry method (FFC NMR), dielectric spectroscopy (DS), optical microscopy (POM), and differential scanning calorimetry (DSC) approach was applied to investigate the influence of selective deuteration on the molecular dynamics, thermal properties, self-organization, and electric-field responsiveness to a 4′-pentyl-4-biphenylcarbonitrile (5CB) liquid crystal. The NMR relaxation dispersion (NMRD) profiles were analyzed using theoretical models for the description of dynamics processes in different mesophases. Obtained optical textures of selectively deuterated 5CB showed the occurrence of the domain structure close to the I/N phase transition. The dielectric measurements showed a substantial difference in switching fields between fully protonated/deuterated 5CB and selectively deuterated molecules. The DSC thermograms showed a more complex phase transition sequence for partially deuterated 5CB with respect to fully protonated/deuterated molecules. Full article
(This article belongs to the Special Issue Liquid Crystals and Other Partially Disordered Molecular Systems)
Show Figures

Figure 1

12 pages, 2400 KB  
Article
Fast Field-Cycling Nuclear Magnetic Resonance Relaxometry of Perfluorosulfonic Acid Ionomers and Their Perfluorosulfonyl Fluoride Precursors Membranes
by Makoto Yamaguchi, Seiichi Kuroda, Takahiko Asaoka and Kazuhiko Shinohara
Molecules 2024, 29(11), 2552; https://doi.org/10.3390/molecules29112552 - 29 May 2024
Cited by 2 | Viewed by 1161
Abstract
The spin-lattice relaxation rates (R1) of fluorine nuclei in perfluorosulfonic acid (PFSA) ionomer membranes and their precursor solid perfluorosulfonyl fluoride (PFSF) were measured by fast field-cycling (FFC) NMR relaxometry. The XRD profiles of PFSA and PFSF are similar and show [...] Read more.
The spin-lattice relaxation rates (R1) of fluorine nuclei in perfluorosulfonic acid (PFSA) ionomer membranes and their precursor solid perfluorosulfonyl fluoride (PFSF) were measured by fast field-cycling (FFC) NMR relaxometry. The XRD profiles of PFSA and PFSF are similar and show a characteristic peak, indicating the alignment of main chains. While the SAXS profiles of the PFSA membranes show two peaks, those of the solid PFSF lack the ionomer peak which is characteristic of hydrophilic side chains in the PFSA ionomer membranes. The Larmor frequency dependence of R1 obeys power law and the indices are dependent on the sample and temperature. The indices of the PFSA membranes change from −1/2 to −1 along with the Larmor frequency and temperature dependence decrease, which is consistent with the generalized defect diffusion model. Estimated activation energies are in good agreement with those obtained from dynamical mechanical analysis and dielectric spectroscopy, indicating the segmental motion of the backbones as the common origin of these observations. On the other hand, the index changes to −3/4 in the case of the PFSFs, which has been predicted by the reptation model. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Figure 1

14 pages, 968 KB  
Article
Robust Algorithms for the Analysis of Fast-Field-Cycling Nuclear Magnetic Resonance Dispersion Curves
by Villiam Bortolotti, Pellegrino Conte, Germana Landi, Paolo Lo Meo, Anastasiia Nagmutdinova, Giovanni Vito Spinelli and Fabiana Zama
Computers 2024, 13(6), 129; https://doi.org/10.3390/computers13060129 - 23 May 2024
Cited by 3 | Viewed by 1367
Abstract
Fast-Field-Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometry is a powerful, non-destructive magnetic resonance technique that enables, among other things, the investigation of slow molecular dynamics at low magnetic field intensities. FFC-NMR relaxometry measurements provide insight into molecular motion across various timescales within a [...] Read more.
Fast-Field-Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometry is a powerful, non-destructive magnetic resonance technique that enables, among other things, the investigation of slow molecular dynamics at low magnetic field intensities. FFC-NMR relaxometry measurements provide insight into molecular motion across various timescales within a single experiment. This study focuses on a model-free approach, representing the NMRD profile R1 as a linear combination of Lorentzian functions, thereby addressing the challenges of fitting data within an ill-conditioned linear least-squares framework. Tackling this problem, we present a comprehensive review and experimental validation of three regularization approaches to implement the model-free approach to analyzing NMRD profiles. These include (1) MF-UPen, utilizing locally adapted L2 regularization; (2) MF-L1, based on L1 penalties; and (3) a hybrid approach combining locally adapted L2 and global L1 penalties. Each method’s regularization parameters are determined automatically according to the Balancing and Uniform Penalty principles. Our contributions include the implementation and experimental validation of the MF-UPen and MF-MUPen algorithms, and the development of a “dispersion analysis” technique to assess the existence range of the estimated parameters. The objective of this work is to delineate the variance in fit quality and correlation time distribution yielded by each algorithm, thus broadening the set of software tools for the analysis of sample structures in FFC-NMR studies. The findings underline the efficacy and applicability of these algorithms in the analysis of NMRD profiles from samples representing different potential scenarios. Full article
Show Figures

Figure 1

17 pages, 4425 KB  
Article
A New Model for Solving Hydrological Connectivity Inside Soils by Fast Field Cycling NMR Relaxometry
by Pellegrino Conte, Alessio Nicosia and Vito Ferro
Water 2023, 15(13), 2397; https://doi.org/10.3390/w15132397 - 28 Jun 2023
Cited by 1 | Viewed by 2063
Abstract
In this paper, a new quantitative approach for estimating the structural and functional connectivity inside soil by Fast Field Cycling (FFC) NMR relaxometry is presented, tested by measurements carried out in three samples with different texture characteristics. Measurements by FFC NMR relaxometry have [...] Read more.
In this paper, a new quantitative approach for estimating the structural and functional connectivity inside soil by Fast Field Cycling (FFC) NMR relaxometry is presented, tested by measurements carried out in three samples with different texture characteristics. Measurements by FFC NMR relaxometry have been carried out using water-suspended samples and Proton Larmor frequencies (νL) ranging in the 0.015–35 MHz interval. Two non-degraded soil samples, with different textural characteristics, and a degraded soil collected in a badland area, were analyzed. For a given soil and any applied Proton Larmor frequency, the distribution of the longitudinal relaxation times, T1, (i.e., relaxogram) measured by FFC NMR has been integrated, and the resulting S-shaped curve (i.e., relaxogram integration curve) was represented, for the first time, by Gumbel’s diagram. This new representation of the relaxogram integration curve, transforming the S-shaped curve into a straight line, allowed for distinguishing three linear components, corresponding to three different relaxation time ranges, characterized by three different slopes. Two points, identified by the abrupt slope changes of the relaxogram integration curve plotted in Gumbel’s diagram, are used to identify two characteristic values of relaxation time, T1A and T1B, which define three well-known pore size classes (T1 < T1A micro-pores, T1A < T1 < T1B meso-pores, and T1 > T1B macro-pores). The relaxogram integration curve allowed for calculating the non-exceeding empirical cumulative frequency, F(T1), corresponding to the characteristic T1A and T1B values. The analysis demonstrated that the relaxogram can be used to determine the pore-size ranges of each investigated sample. Finally, using the slope values of the three components of the relaxogram integration curve, a new definition of the Structural Connectivity Index, SCI, and Functional Connectivity Index, FCI, was proposed. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

12 pages, 2914 KB  
Article
Monitoring the Effect of Calcium Nitrate on the Induction Period of Cement Hydration via Low-Field NMR Relaxometry
by Mihai M. Rusu, David Faux and Ioan Ardelean
Molecules 2023, 28(2), 476; https://doi.org/10.3390/molecules28020476 - 4 Jan 2023
Cited by 8 | Viewed by 2175
Abstract
The hydration process of Portland cement is still not completely understood. For instance, it is not clear what produces the induction period, which follows the initial period of fast reaction, and is characterized by a reduced reactivity. To contribute to such understanding, we [...] Read more.
The hydration process of Portland cement is still not completely understood. For instance, it is not clear what produces the induction period, which follows the initial period of fast reaction, and is characterized by a reduced reactivity. To contribute to such understanding, we compare here the hydration process of two cement samples, the simple cement paste and the cement paste containing calcium nitrate as an accelerator. The hydration of these samples is monitored during the induction period using two different low-field nuclear magnetic resonance (NMR) relaxometry techniques. The transverse relaxation measurements of the 1H nuclei at 20 MHz resonance frequency show that the capillary pore water is not consumed during the induction period and that this stage is shortened in the presence of calcium nitrate. The longitudinal relaxation measurements, performed at variable Larmor frequency of the 1H nuclei, reveal a continuous increase in the surface-to-volume ratio of the capillary pores, even during the induction period, and this increase is faster in the presence of calcium nitrate. The desorption time of water molecules from the surface was also evaluated, and it increases in the presence of calcium nitrate. Full article
(This article belongs to the Special Issue Advances in NMR and MRI of Materials)
Show Figures

Figure 1

10 pages, 1485 KB  
Article
Water Dynamics in Starch Based Confectionery Products including Different Types of Sugar
by Esmanur İlhan, Pelin Poçan, Danuta Kruk, Miłosz Wojciechowski, Maciej Osuch, Roksana Markiewicz, Stefan Jurga and Mecit Halil Oztop
Molecules 2022, 27(7), 2216; https://doi.org/10.3390/molecules27072216 - 29 Mar 2022
Cited by 6 | Viewed by 3322
Abstract
Starch-based confectionery products were prepared using different types of sugar. In addition to using different sugar, starch was replaced with soy protein isolate (SPI) in some of the products. 1H NMR spin-lattice relaxation experiments were performed for the collection of products in [...] Read more.
Starch-based confectionery products were prepared using different types of sugar. In addition to using different sugar, starch was replaced with soy protein isolate (SPI) in some of the products. 1H NMR spin-lattice relaxation experiments were performed for the collection of products in a broad frequency range from 4 KHz to 30 MHz to get insight into the influence of different sugar types and SPI on the dynamics of water in composite gel systems. The relaxation data have been decomposed into relaxation contributions associated with two different pools of water molecules characterized by different mobility. The translation dynamics of water molecules has been quantitatively described in terms of a dedicated relaxation model. The influence of the sample composition (the type of sugar and/or the presence of SPI) on the water mobility was thoroughly discussed. The results indicate that the addition of soy protein does not affect water dynamics for samples including sucrose. In addition, as the complementary measurements, physical properties of the products, such as the moisture content, water activity and texture, were investigated in terms of X-ray diffraction and thermogravimetric analysis. Full article
(This article belongs to the Special Issue Food Analysis in the 21st Century: Challenges and Possibilities)
Show Figures

Figure 1

21 pages, 4070 KB  
Article
Changes in Physicochemical Properties of Biochar after Addition to Soil
by Guido Fellet, Pellegrino Conte, Villiam Bortolotti, Fabiana Zama, Germana Landi, Delia Francesca Chillura Martino, Vito Ferro, Luca Marchiol and Paolo Lo Meo
Agriculture 2022, 12(3), 320; https://doi.org/10.3390/agriculture12030320 - 22 Feb 2022
Cited by 13 | Viewed by 3453
Abstract
It is recognized that biochar undergoes changes when it is applied to soils. However, the mechanisms of biochar alterations are not fully understood yet. To this purpose, the present study is designed to investigate the transformations in the soil of two different biochars [...] Read more.
It is recognized that biochar undergoes changes when it is applied to soils. However, the mechanisms of biochar alterations are not fully understood yet. To this purpose, the present study is designed to investigate the transformations in the soil of two different biochars obtained from pyrolysis of fir-wood pellets. The production of the biochars differed for the dry and wet quenching procedures used to terminate the pyrolysis. Both biochars were applied to clay soil (26% sand, 6% silt, and 68% clay) placed into lysimeters. After water saturation and 15 days of equilibration, seeds of watercress (Lepidium sativum) were cultivated. After a further 7 weeks, the biochars were manually separated from the systems. A total of four samples were collected. They were analyzed for chemical–physical characteristics by using an innovative technique referred to as fast field cycling nuclear magnetic resonance relaxometry. The results showed that the dry−quenching produced a material that was mainly chemically altered after application to soil compared to the biochar obtained by the wet−quenching. Indeed, the latter was both chemically and physically modified. In particular, results showed that water was better retained in the soil treated with the dry−quenched material. Consequently, we may suggest that crop productivity and environmental remediation may be modulated by applying either the dry−quenched or the wet−quenched biochar. Full article
Show Figures

Figure 1

20 pages, 3337 KB  
Article
Biochar from Wood Chips and Corn Cobs for Adsorption of Thioflavin T and Erythrosine B
by Martin Pipíška, Eva Klára Krajčíková, Milan Hvostik, Vladimír Frišták, Libor Ďuriška, Ivona Černičková, Mária Kaňuchová, Pellegrino Conte and Gerhard Soja
Materials 2022, 15(4), 1492; https://doi.org/10.3390/ma15041492 - 17 Feb 2022
Cited by 34 | Viewed by 4629
Abstract
Biochars from wood chips (WC) and corn cobs (CC) were prepared by slow pyrolysis and used for sorption separation of erythrosine B (EB) and thioflavin T (TT) in batch experiments. Biochar-based adsorbents were extensively characterized using FTIR, XRD, SEM-EDX, and XPS techniques. The [...] Read more.
Biochars from wood chips (WC) and corn cobs (CC) were prepared by slow pyrolysis and used for sorption separation of erythrosine B (EB) and thioflavin T (TT) in batch experiments. Biochar-based adsorbents were extensively characterized using FTIR, XRD, SEM-EDX, and XPS techniques. The kinetics studies revealed that adsorption on external surfaces was the rate-limiting step for the removal of TT on both WC and CC biochar, while intraparticle diffusion was the rate-limiting step for the adsorption of EB. Maximal experimental adsorption capacities Qmaxexp of TT reached 182 ± 5 (WC) and 45 ± 2 mg g−1 (CC), and EB 12.7 ± 0.9 (WC) and 1.5 ± 0.4 mg g−1 (CC), respectively, thereby indicating a higher affinity of biochars for TT. The adsorption mechanism was found to be associated with π-π interaction, hydrogen bonding, and pore filling. Application of the innovative dynamic approach based on fast-field-cycling NMR relaxometry indicates that variations in the retention of water-soluble dyes could be explained by distinct water dynamics in the porous structures of WC and CC. The obtained results suggest that studied biochars will be more effective in adsorbing of cationic than anionic dyes from contaminated effluents. Full article
(This article belongs to the Special Issue Environmentally-Friendly Materials in Wastewater Treatment)
Show Figures

Figure 1

12 pages, 1783 KB  
Article
Low-Field NMR Relaxometry for Intraoperative Tumour Margin Assessment in Breast-Conserving Surgery
by Valeria Bitonto, Maria Rosaria Ruggiero, Alessandra Pittaro, Isabella Castellano, Riccardo Bussone, Lionel M. Broche, David J. Lurie, Silvio Aime, Simona Baroni and Simonetta Geninatti Crich
Cancers 2021, 13(16), 4141; https://doi.org/10.3390/cancers13164141 - 17 Aug 2021
Cited by 6 | Viewed by 3644
Abstract
As conserving surgery is routinely applied for the treatment of early-stage breast cancer, the need for new technology to improve intraoperative margin assessment has become increasingly important. In this study, the potential of fast field-cycling 1H-NMR relaxometry as a new diagnostic tool [...] Read more.
As conserving surgery is routinely applied for the treatment of early-stage breast cancer, the need for new technology to improve intraoperative margin assessment has become increasingly important. In this study, the potential of fast field-cycling 1H-NMR relaxometry as a new diagnostic tool was evaluated. The technique allows the determination of the tissue proton relaxation rates (R1), as a function of the applied magnetic field, which are affected by the changes in the composition of the mammary gland tissue occurring during the development of neoplasia. The study involved 104 small tissue samples obtained from surgical specimens destined for histopathology. It was found that a good accuracy in margin assessment, i.e., a sensitivity of 92% and a specificity of 85%, can be achieved by using two quantifiers, namely (i) the slope of the line joining the R1 values measured at 0.02 and 1 MHz and (ii) the sum of the R1 values measured at 0.39 and 1 MHz. The method is fast, and it does not rely on the expertise of a pathologist or cytologist. The obtained results suggest that a simplified, low-cost, automated instrument might compete well with the currently available tools in margin assessment. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

33 pages, 6013 KB  
Review
Nuclear Magnetic Resonance with Fast Field-Cycling Setup: A Valid Tool for Soil Quality Investigation
by Pellegrino Conte and Paolo Lo Meo
Agronomy 2020, 10(7), 1040; https://doi.org/10.3390/agronomy10071040 - 18 Jul 2020
Cited by 19 | Viewed by 6244
Abstract
Nuclear magnetic resonance (NMR) techniques are largely employed in several fields. As an example, NMR spectroscopy is used to provide structural and conformational information on pure systems, while affording quantitative evaluation on the number of nuclei in a given chemical environment. When dealing [...] Read more.
Nuclear magnetic resonance (NMR) techniques are largely employed in several fields. As an example, NMR spectroscopy is used to provide structural and conformational information on pure systems, while affording quantitative evaluation on the number of nuclei in a given chemical environment. When dealing with relaxation, NMR allows understanding of molecular dynamics, i.e., the time evolution of molecular motions. The analysis of relaxation times conducted on complex liquid–liquid and solid–liquid mixtures is directly related to the nature of the interactions among the components of the mixture. In the present review paper, the peculiarities of low resolution fast field-cycling (FFC) NMR relaxometry in soil science are reported. In particular, the general aspects of the typical FFC NMR relaxometry experiment are firstly provided. Afterwards, a discussion on the main mathematical models to be used to “read” and interpret experimental data on soils is given. Following this, an overview on the main results in soil science is supplied. Finally, new FFC NMR-based hypotheses on nutrient dynamics in soils are described Full article
Show Figures

Figure 1

Back to TopTop