Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = extended multi-attribute profiles (EMAPs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 30487 KiB  
Article
Joint Classification of Hyperspectral and LiDAR Data via Multiprobability Decision Fusion Method
by Tao Chen, Sizuo Chen, Luying Chen, Huayue Chen, Bochuan Zheng and Wu Deng
Remote Sens. 2024, 16(22), 4317; https://doi.org/10.3390/rs16224317 - 19 Nov 2024
Cited by 1 | Viewed by 1472
Abstract
With the development of sensor technology, the sources of remotely sensed image data for the same region are becoming increasingly diverse. Unlike single-source remote sensing image data, multisource remote sensing image data can provide complementary information for the same feature, promoting its recognition. [...] Read more.
With the development of sensor technology, the sources of remotely sensed image data for the same region are becoming increasingly diverse. Unlike single-source remote sensing image data, multisource remote sensing image data can provide complementary information for the same feature, promoting its recognition. The effective utilization of remote sensing image data from various sources can enhance the extraction of image features and improve the accuracy of feature recognition. Hyperspectral remote sensing (HSI) data and light detection and ranging (LiDAR) data can provide complementary information from different perspectives and are frequently combined in feature identification tasks. However, the process of joint use suffers from data redundancy, low classification accuracy and high time complexity. To address the aforementioned issues and improve feature recognition in classification tasks, this paper introduces a multiprobability decision fusion (PRDRMF) method for the combined classification of HSI and LiDAR data. First, the original HSI data and LiDAR data are downscaled via the principal component–relative total variation (PRTV) method to remove redundant information. In the multifeature extraction module, the local texture features and spatial features of the image are extracted to consider the local texture and spatial structure of the image data. This is achieved by utilizing the local binary pattern (LBP) and extended multiattribute profile (EMAP) for the two types of data after dimensionality reduction. The four extracted features are subsequently input into the corresponding kernel–extreme learning machine (KELM), which has a simple structure and good classification performance, to obtain four classification probability matrices (CPMs). Finally, the four CPMs are fused via a multiprobability decision fusion method to obtain the optimal classification results. Comparison experiments on four classical HSI and LiDAR datasets demonstrate that the method proposed in this paper achieves high classification performance while reducing the overall time complexity of the method. Full article
Show Figures

Figure 1

20 pages, 5701 KiB  
Article
Recursive RX with Extended Multi-Attribute Profiles for Hyperspectral Anomaly Detection
by Fang He, Shuai Yan, Yao Ding, Zhensheng Sun, Jianwei Zhao, Haojie Hu and Yujie Zhu
Remote Sens. 2023, 15(3), 589; https://doi.org/10.3390/rs15030589 - 18 Jan 2023
Cited by 12 | Viewed by 2313
Abstract
Hyperspectral anomaly detection (HAD) plays an important role in military and civilian applications and has attracted a lot of research. The well-known Reed–Xiaoli (RX) algorithm is the benchmark of HAD methods. Based on the RX model, many variants have been developed. However, most [...] Read more.
Hyperspectral anomaly detection (HAD) plays an important role in military and civilian applications and has attracted a lot of research. The well-known Reed–Xiaoli (RX) algorithm is the benchmark of HAD methods. Based on the RX model, many variants have been developed. However, most of them ignore the spatial characteristics of hyperspectral images (HSIs). In this paper, we combine the extended multi-attribute profiles (EMAP) and RX algorithm to propose the Recursive RX with Extended Multi-Attribute Profiles (RRXEMAP) algorithm. Firstly, EMAP is utilized to extract the spatial structure information of HSI. Then, a simple method of background purification is proposed. That is, the background is purified by utilizing the RX detector to remove the pixels that are more likely to be anomalies, which helps improve the ability of background estimation. In addition, a parameter is utilized to control the purification level and can be selected by experiments. Finally, the RX detector is used again between the EMAP feature and the new background distribution to judge the anomaly. Experimental results on six real hyperspectral datasets and a synthetic dataset demonstrate the effectiveness of the proposed RRXEMAP method and the importance of using the EMAP feature and background purity means. Especially, on the abu-airport-2 dataset, the AUC value obtained by the present method is 0.9858, which is higher than the second one, CRD, by 0.0198. Full article
(This article belongs to the Special Issue Deep Neural Networks for Remote Sensing Scene Classification)
Show Figures

Figure 1

19 pages, 4067 KiB  
Article
Patch-Wise Semantic Segmentation for Hyperspectral Images via a Cubic Capsule Network with EMAP Features
by Le Sun, Xiangbo Song, Huxiang Guo, Guangrui Zhao and Jinwei Wang
Remote Sens. 2021, 13(17), 3497; https://doi.org/10.3390/rs13173497 - 3 Sep 2021
Cited by 11 | Viewed by 2900
Abstract
In order to overcome the disadvantages of convolution neural network (CNN) in the current hyperspectral image (HSI) classification/segmentation methods, such as the inability to recognize the rotation of spatial objects, the difficulty to capture the fine spatial features and the problem that principal [...] Read more.
In order to overcome the disadvantages of convolution neural network (CNN) in the current hyperspectral image (HSI) classification/segmentation methods, such as the inability to recognize the rotation of spatial objects, the difficulty to capture the fine spatial features and the problem that principal component analysis (PCA) ignores some important information when it retains few components, in this paper, an HSI segmentation model based on extended multi-morphological attribute profile (EMAP) features and cubic capsule network (EMAP–Cubic-Caps) was proposed. EMAP features can effectively extract various attributes profile features of entities in HSI, and the cubic capsule neural network can effectively capture complex spatial features with more details. Firstly, EMAP algorithm is introduced to extract the morphological attribute profile features of the principal components extracted by PCA, and the EMAP feature map is used as the input of the network. Then, the spectral and spatial low-layer information of the HSI is extracted by a cubic convolution network, and the high-layer information of HSI is extracted by the capsule module, which consists of an initial capsule layer and a digital capsule layer. Through the experimental comparison on three well-known HSI datasets, the superiority of the proposed algorithm in semantic segmentation is validated. Full article
(This article belongs to the Special Issue Semantic Segmentation of High-Resolution Images with Deep Learning)
Show Figures

Graphical abstract

21 pages, 4006 KiB  
Article
Distance Transform-Based Spectral-Spatial Feature Vector for Hyperspectral Image Classification with Stacked Autoencoder
by Hadis Madani and Kenneth McIsaac
Remote Sens. 2021, 13(9), 1732; https://doi.org/10.3390/rs13091732 - 29 Apr 2021
Cited by 9 | Viewed by 3125
Abstract
Pixel-wise classification of hyperspectral images (HSIs) from remote sensing data is a common approach for extracting information about scenes. In recent years, approaches based on deep learning techniques have gained wide applicability. An HSI dataset can be viewed either as a collection of [...] Read more.
Pixel-wise classification of hyperspectral images (HSIs) from remote sensing data is a common approach for extracting information about scenes. In recent years, approaches based on deep learning techniques have gained wide applicability. An HSI dataset can be viewed either as a collection of images, each one captured at a different wavelength, or as a collection of spectra, each one associated with a specific point (pixel). Enhanced classification accuracy is enabled if the spectral and spatial information are combined in the input vector. This allows simultaneous classification according to spectral type but also according to geometric relationships. In this study, we proposed a novel spatial feature vector which improves accuracies in pixel-wise classification. Our proposed feature vector is based on the distance transform of the pixels with respect to the dominant edges in the input HSI. In other words, we allow the location of pixels within geometric subdivisions of the dataset to modify the contribution of each pixel to the spatial feature vector. Moreover, we used the extended multi attribute profile (EMAP) features to add more geometric features to the proposed spatial feature vector. We have performed experiments with three hyperspectral datasets. In addition to the Salinas and University of Pavia datasets, which are commonly used in HSI research, we include samples from our Surrey BC dataset. Our proposed method results compares favorably to traditional algorithms as well as to some recently published deep learning-based algorithms. Full article
(This article belongs to the Special Issue Feature Extraction and Data Classification in Hyperspectral Imaging)
Show Figures

Figure 1

22 pages, 2031 KiB  
Article
Random Collective Representation-Based Detector with Multiple Features for Hyperspectral Images
by Zhongheng Li, Fang He, Haojie Hu, Fei Wang and Weizhong Yu
Remote Sens. 2021, 13(4), 721; https://doi.org/10.3390/rs13040721 - 16 Feb 2021
Cited by 6 | Viewed by 2156
Abstract
Collaborative representation-based detector (CRD), as the most representative anomaly detection method, has been widely applied in the field of hyperspectral anomaly detection (HAD). However, the sliding dual window of the original CRD introduces high computational complexity. Moreover, most HAD models only consider a [...] Read more.
Collaborative representation-based detector (CRD), as the most representative anomaly detection method, has been widely applied in the field of hyperspectral anomaly detection (HAD). However, the sliding dual window of the original CRD introduces high computational complexity. Moreover, most HAD models only consider a single spectral or spatial feature of the hyperspectral image (HSI), which is unhelpful for improving detection accuracy. To solve these problems, in terms of speed and accuracy, we propose a novel anomaly detection approach, named Random Collective Representation-based Detector with Multiple Feature (RCRDMF). This method includes the following steps. This method first extract the different features include spectral feature, Gabor feature, extended multiattribute profile (EMAP) feature, and extended morphological profile (EMP) feature matrix from the HSI image, which enables us to improve the accuracy of HAD by combining the multiple spectral and spatial features. The ensemble and random collaborative representation detector (ERCRD) method is then applied, which can improve the anomaly detection speed. Finally, an adaptive weight approach is proposed to calculate the weight for each feature. Experimental results on six hyperspectral datasets demonstrate that the proposed approach has the superiority over accuracy and speed. Full article
Show Figures

Graphical abstract

19 pages, 1748 KiB  
Article
Multiscale Adjacent Superpixel-Based Extended Multi-Attribute Profiles Embedded Multiple Kernel Learning Method for Hyperspectral Classification
by Lei Pan, Chengxun He, Yang Xiang and Le Sun
Remote Sens. 2021, 13(1), 50; https://doi.org/10.3390/rs13010050 - 25 Dec 2020
Cited by 6 | Viewed by 3208
Abstract
In this paper, superpixel features and extended multi-attribute profiles (EMAPs) are embedded in a multiple kernel learning framework to simultaneously exploit the local and multiscale information in both spatial and spectral dimensions for hyperspectral image (HSI) classification. First, the original HSI is reduced [...] Read more.
In this paper, superpixel features and extended multi-attribute profiles (EMAPs) are embedded in a multiple kernel learning framework to simultaneously exploit the local and multiscale information in both spatial and spectral dimensions for hyperspectral image (HSI) classification. First, the original HSI is reduced to three principal components in the spectral domain using principal component analysis (PCA). Then, a fast and efficient segmentation algorithm named simple linear iterative clustering is utilized to segment the principal components into a certain number of superpixels. By setting different numbers of superpixels, a set of multiscale homogenous regional features is extracted. Based on those extracted superpixels and their first-order adjacent superpixels, EMAPs with multimodal features are extracted and embedded into the multiple kernel framework to generate different spatial and spectral kernels. Finally, a PCA-based kernel learning algorithm is used to learn an optimal kernel that contains multiscale and multimodal information. The experimental results on two well-known datasets validate the effectiveness and efficiency of the proposed method compared with several state-of-the-art HSI classifiers. Full article
Show Figures

Graphical abstract

17 pages, 2424 KiB  
Article
Hyperspectral Image Denoising and Classification Using Multi-Scale Weighted EMAPs and Extreme Learning Machine
by Meizhuang Liu, Faxian Cao, Zhijing Yang, Xiaobin Hong and Yuezhen Huang
Electronics 2020, 9(12), 2137; https://doi.org/10.3390/electronics9122137 - 14 Dec 2020
Cited by 6 | Viewed by 2202
Abstract
Recently, extended multi-attribute profiles (EMAPs) have attracted much attention due to its good performance while applied to remote sensing images feature extraction and classification. Since the EMAPs connect multiple attribute features without considering the pixel-based Hyperspectral Image (HSI) classification, homogeneous regions may become [...] Read more.
Recently, extended multi-attribute profiles (EMAPs) have attracted much attention due to its good performance while applied to remote sensing images feature extraction and classification. Since the EMAPs connect multiple attribute features without considering the pixel-based Hyperspectral Image (HSI) classification, homogeneous regions may become unsmooth due to the noise to be introduced. To tackle this problem, we propose the weighted EMAPs (WEMAPs) to reduce the noise and smoothen the homogeneous regions based on weighted mean filter (WMF). Then, we construct multiscale WEMAPs to product multiscale feature in order to extract different spatial structures of the HSI and produce better classification results. Finally, a new joint decision fusion and feature fusion (JDFFF) framework is proposed based on the decision fusion (DF) and the multiscale WEMAPs (MWEMAPs) based on extreme learning machine (ELM) classifier. That is, the classification results from various scales are combined into a final one with ELM to perform the HSI classification. Experiment results show that the proposed algorithm significantly outperforms many state-of-the-art HSI classification algorithms. Full article
(This article belongs to the Section Artificial Intelligence)
Show Figures

Figure 1

17 pages, 5261 KiB  
Article
Deep Learning for Land Cover Classification Using Only a Few Bands
by Chiman Kwan, Bulent Ayhan, Bence Budavari, Yan Lu, Daniel Perez, Jiang Li, Sergio Bernabe and Antonio Plaza
Remote Sens. 2020, 12(12), 2000; https://doi.org/10.3390/rs12122000 - 22 Jun 2020
Cited by 56 | Viewed by 6106
Abstract
There is an emerging interest in using hyperspectral data for land cover classification. The motivation behind using hyperspectral data is the notion that increasing the number of narrowband spectral channels would provide richer spectral information and thus help improve the land cover classification [...] Read more.
There is an emerging interest in using hyperspectral data for land cover classification. The motivation behind using hyperspectral data is the notion that increasing the number of narrowband spectral channels would provide richer spectral information and thus help improve the land cover classification performance. Although hyperspectral data with hundreds of channels provide detailed spectral signatures, the curse of dimensionality might lead to degradation in the land cover classification performance. Moreover, in some practical applications, hyperspectral data may not be available due to cost, data storage, or bandwidth issues, and RGB and near infrared (NIR) could be the only image bands available for land cover classification. Light detection and ranging (LiDAR) data is another type of data to assist land cover classification especially if the land covers of interest have different heights. In this paper, we examined the performance of two Convolutional Neural Network (CNN)-based deep learning algorithms for land cover classification using only four bands (RGB+NIR) and five bands (RGB+NIR+LiDAR), where these limited number of image bands were augmented using Extended Multi-attribute Profiles (EMAP). The deep learning algorithms were applied to a well-known dataset used in the 2013 IEEE Geoscience and Remote Sensing Society (GRSS) Data Fusion Contest. With EMAP augmentation, the two deep learning algorithms were observed to achieve better land cover classification performance using only four bands as compared to that using all 144 hyperspectral bands. Full article
Show Figures

Graphical abstract

28 pages, 63411 KiB  
Article
Improving Land Cover Classification Using Extended Multi-Attribute Profiles (EMAP) Enhanced Color, Near Infrared, and LiDAR Data
by Chiman Kwan, David Gribben, Bulent Ayhan, Sergio Bernabe, Antonio Plaza and Massimo Selva
Remote Sens. 2020, 12(9), 1392; https://doi.org/10.3390/rs12091392 - 28 Apr 2020
Cited by 24 | Viewed by 3763
Abstract
Hyperspectral (HS) data have found a wide range of applications in recent years. Researchers observed that more spectral information helps land cover classification performance in many cases. However, in some practical applications, HS data may not be available, due to cost, data storage, [...] Read more.
Hyperspectral (HS) data have found a wide range of applications in recent years. Researchers observed that more spectral information helps land cover classification performance in many cases. However, in some practical applications, HS data may not be available, due to cost, data storage, or bandwidth issues. Instead, users may only have RGB and near infrared (NIR) bands available for land cover classification. Sometimes, light detection and ranging (LiDAR) data may also be available to assist land cover classification. A natural research problem is to investigate how well land cover classification can be achieved under the aforementioned data constraints. In this paper, we investigate the performance of land cover classification while only using four bands (RGB+NIR) or five bands (RGB+NIR+LiDAR). A number of algorithms have been applied to a well-known dataset (2013 IEEE Geoscience and Remote Sensing Society Data Fusion Contest). One key observation is that some algorithms can achieve better land cover classification performance by using only four bands as compared to that of using all 144 bands in the original hyperspectral data with the help of synthetic bands generated by Extended Multi-attribute Profiles (EMAP). Moreover, LiDAR data do improve the land cover classification performance even further. Full article
Show Figures

Figure 1

25 pages, 21507 KiB  
Article
Performance of Change Detection Algorithms Using Heterogeneous Images and Extended Multi-attribute Profiles (EMAPs)
by Chiman Kwan, Bulent Ayhan, Jude Larkin, Liyun Kwan, Sergio Bernabé and Antonio Plaza
Remote Sens. 2019, 11(20), 2377; https://doi.org/10.3390/rs11202377 - 14 Oct 2019
Cited by 32 | Viewed by 4294
Abstract
We present detection performance of ten change detection algorithms with and without the use of Extended Multi-Attribute Profiles (EMAPs). Heterogeneous image pairs (also known as multimodal image pairs), which are acquired by different imagers, are used as the pre-event and post-event images in [...] Read more.
We present detection performance of ten change detection algorithms with and without the use of Extended Multi-Attribute Profiles (EMAPs). Heterogeneous image pairs (also known as multimodal image pairs), which are acquired by different imagers, are used as the pre-event and post-event images in the investigations. The objective of this work is to examine if the use of EMAP, which generates synthetic bands, can improve the detection performances of these change detection algorithms. Extensive experiments using five heterogeneous image pairs and ten change detection algorithms were carried out. It was observed that in 34 out of 50 cases, change detection performance was improved with EMAP. A consistent detection performance boost in all five datasets was observed with EMAP for Homogeneous Pixel Transformation (HPT), Chronochrome (CC), and Covariance Equalization (CE) change detection algorithms. Full article
Show Figures

Graphical abstract

23 pages, 6687 KiB  
Article
Coastal Wetland Mapping with Sentinel-2 MSI Imagery Based on Gravitational Optimized Multilayer Perceptron and Morphological Attribute Profiles
by Aizhu Zhang, Genyun Sun, Ping Ma, Xiuping Jia, Jinchang Ren, Hui Huang and Xuming Zhang
Remote Sens. 2019, 11(8), 952; https://doi.org/10.3390/rs11080952 - 20 Apr 2019
Cited by 23 | Viewed by 6769
Abstract
Coastal wetland mapping plays an essential role in monitoring climate change, the hydrological cycle, and water resources. In this study, a novel classification framework based on the gravitational optimized multilayer perceptron classifier and extended multi-attribute profiles (EMAPs) is presented for coastal wetland mapping [...] Read more.
Coastal wetland mapping plays an essential role in monitoring climate change, the hydrological cycle, and water resources. In this study, a novel classification framework based on the gravitational optimized multilayer perceptron classifier and extended multi-attribute profiles (EMAPs) is presented for coastal wetland mapping using Sentinel-2 multispectral instrument (MSI) imagery. In the proposed method, the morphological attribute profiles (APs) are firstly extracted using four attribute filters based on the characteristics of wetlands in each band from Sentinel-2 imagery. These APs form a set of EMAPs which comprehensively represent the irregular wetland objects in multiscale and multilevel. The EMAPs and original spectral features are then classified with a new multilayer perceptron (MLP) classifier whose parameters are optimized by a stability-constrained adaptive alpha for a gravitational search algorithm. The performance of the proposed method was investigated using Sentinel-2 MSI images of two coastal wetlands, i.e., the Jiaozhou Bay and the Yellow River Delta in Shandong province of eastern China. Comparisons with four other classifiers through visual inspection and quantitative evaluation verified the superiority of the proposed method. Furthermore, the effectiveness of different APs in EMAPs were also validated. By combining the developed EMAPs features and novel MLP classifier, complicated wetland types with high within-class variability and low between-class disparity were effectively discriminated. The superior performance of the proposed framework makes it available and preferable for the mapping of complicated coastal wetlands using Sentinel-2 data and other similar optical imagery. Full article
Show Figures

Graphical abstract

17 pages, 10014 KiB  
Article
Joint Sparse and Low-Rank Multi-Task Learning with Extended Multi-Attribute Profile for Hyperspectral Target Detection
by Xing Wu, Xia Zhang, Nan Wang and Yi Cen
Remote Sens. 2019, 11(2), 150; https://doi.org/10.3390/rs11020150 - 15 Jan 2019
Cited by 13 | Viewed by 3481
Abstract
Target detection is an active area in hyperspectral imagery (HSI) processing. Many algorithms have been proposed for the past decades. However, the conventional detectors mainly benefit from the spectral information without fully exploiting the spatial structures of HSI. Besides, they primarily use all [...] Read more.
Target detection is an active area in hyperspectral imagery (HSI) processing. Many algorithms have been proposed for the past decades. However, the conventional detectors mainly benefit from the spectral information without fully exploiting the spatial structures of HSI. Besides, they primarily use all bands information and ignore the inter-band redundancy. Moreover, they do not make full use of the difference between the background and target samples. To alleviate these problems, we proposed a novel joint sparse and low-rank multi-task learning (MTL) with extended multi-attribute profile (EMAP) algorithm (MTJSLR-EMAP). Briefly, the spatial features of HSI were first extracted by morphological attribute filters. Then the MTL was exploited to reduce band redundancy and retain the discriminative information simultaneously. Considering the distribution difference between the background and target samples, the target and background pixels were separately modeled with different regularization terms. In each task, a background pixel can be low-rank represented by the background samples while a target pixel can be sparsely represented by the target samples. Finally, the proposed algorithm was compared with six detectors including constrained energy minimization (CEM), adaptive coherence estimator (ACE), hierarchical CEM (hCEM), sparsity-based detector (STD), joint sparse representation and MTL detector (JSR-MTL), independent encoding JSR-MTL (IEJSR-MTL) on three datasets. Corresponding to each competitor, it has the average detection performance improvement of about 19.94%, 22.53%, 16.92%, 14.87%, 14.73%, 4.21% respectively. Extensive experimental results demonstrated that MTJSLR-EMAP outperforms several state-of-the-art algorithms. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

22 pages, 2157 KiB  
Article
Extreme Sparse Multinomial Logistic Regression: A Fast and Robust Framework for Hyperspectral Image Classification
by Faxian Cao, Zhijing Yang, Jinchang Ren, Wing-Kuen Ling, Huimin Zhao and Stephen Marshall
Remote Sens. 2017, 9(12), 1255; https://doi.org/10.3390/rs9121255 - 2 Dec 2017
Cited by 32 | Viewed by 6445
Abstract
Although sparse multinomial logistic regression (SMLR) has provided a useful tool for sparse classification, it suffers from inefficacy in dealing with high dimensional features and manually set initial regressor values. This has significantly constrained its applications for hyperspectral image (HSI) classification. In order [...] Read more.
Although sparse multinomial logistic regression (SMLR) has provided a useful tool for sparse classification, it suffers from inefficacy in dealing with high dimensional features and manually set initial regressor values. This has significantly constrained its applications for hyperspectral image (HSI) classification. In order to tackle these two drawbacks, an extreme sparse multinomial logistic regression (ESMLR) is proposed for effective classification of HSI. First, the HSI dataset is projected to a new feature space with randomly generated weight and bias. Second, an optimization model is established by the Lagrange multiplier method and the dual principle to automatically determine a good initial regressor for SMLR via minimizing the training error and the regressor value. Furthermore, the extended multi-attribute profiles (EMAPs) are utilized for extracting both the spectral and spatial features. A combinational linear multiple features learning (MFL) method is proposed to further enhance the features extracted by ESMLR and EMAPs. Finally, the logistic regression via the variable splitting and the augmented Lagrangian (LORSAL) is adopted in the proposed framework for reducing the computational time. Experiments are conducted on two well-known HSI datasets, namely the Indian Pines dataset and the Pavia University dataset, which have shown the fast and robust performance of the proposed ESMLR framework. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Graphical abstract

Back to TopTop