Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = exosporium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3855 KiB  
Article
Time-Resolved Proteomics of Germinating Spores of Bacillus cereus
by Xiaowei Gao, Bhagyashree N. Swarge, Winfried Roseboom, Peter Setlow, Stanley Brul and Gertjan Kramer
Int. J. Mol. Sci. 2022, 23(21), 13614; https://doi.org/10.3390/ijms232113614 - 6 Nov 2022
Cited by 6 | Viewed by 3323
Abstract
Bacillus cereus is a spore-forming human pathogen that is a burden to the food chain. Dormant spores are highly resistant to harsh environmental conditions, but lose resistance after germination. In this study, we investigate the B. cereus spore proteome upon spore germination and [...] Read more.
Bacillus cereus is a spore-forming human pathogen that is a burden to the food chain. Dormant spores are highly resistant to harsh environmental conditions, but lose resistance after germination. In this study, we investigate the B. cereus spore proteome upon spore germination and outgrowth so as to obtain new insights into the molecular mechanisms involved. We used mass spectrometry combined with co-expression network analysis and obtained a unique global proteome view of the germination and outgrowth processes of B. cereus spores by monitoring 2211 protein changeovers. We are the first to examine germination and outgrowth models of B. cereus spores experimentally by studying the dynamics of germinant receptors, other proteins involved in spore germination and resistance, and coat and exosporium proteins. Furthermore, through the co-expression analysis of 1175 proteins identified with high quality data, germination proteome data were clustered into eight modules (termed black, blue, brown, green, red, turquoise, grey, and yellow), whose associated functions and expression profiles were investigated. Germination related proteins were clustered into blue and brown modules, the abundances of which decreased after finishing germination. In the brown and blue we identified 124 proteins that could be vital during germination. These proteins will be very interesting to study in future genetic studies regarding their function in spore revival in B. cereus. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics and Genomics)
Show Figures

Figure 1

23 pages, 3433 KiB  
Article
Role of the Spore Coat Proteins CotA and CotB, and the Spore Surface Protein CDIF630_02480, on the Surface Distribution of Exosporium Proteins in Clostridioides difficile 630 Spores
by Nicolás Montes-Bravo, Alba Romero-Rodríguez, José García-Yunge, César Medina, Marjorie Pizarro-Guajardo and Daniel Paredes-Sabja
Microorganisms 2022, 10(10), 1918; https://doi.org/10.3390/microorganisms10101918 - 27 Sep 2022
Cited by 4 | Viewed by 2907
Abstract
Clostridioides difficile is Gram-positive spore-former bacterium and the leading cause of nosocomial antibiotic-associated diarrhea. During disease, C. difficile forms metabolically dormant spores that persist in the host and contribute to recurrence of the disease. The outermost surface of C. difficile spores, termed the [...] Read more.
Clostridioides difficile is Gram-positive spore-former bacterium and the leading cause of nosocomial antibiotic-associated diarrhea. During disease, C. difficile forms metabolically dormant spores that persist in the host and contribute to recurrence of the disease. The outermost surface of C. difficile spores, termed the exosporium, plays an essential role in interactions with host surfaces and the immune system. The main exosporium proteins identified to date include three orthologues of the BclA family of collagen-like proteins, and three cysteine-rich proteins. However, how the underlying spore coat influences exosporium assembly remains unclear. In this work, we explore the contribution of spore coat proteins cotA and cotB, and the spore surface protein, CDIF630_02480, to the exosporium ultrastructure, formation of the polar appendage and the surface accessibility of exosporium proteins. Transmission electron micrographs of spores of insertional inactivation mutants demonstrate that while cotB contributes to the formation of thick-exosporium spores, cotA and CDIF630_02480 contribute to maintain proper thickness of the spore coat and exosporium layers, respectively. The effect of the absence of cotA, cotB and CDIF630_02480 on the surface accessibility of the exosporium proteins CdeA, CdeC, CdeM, BclA2 and BclA3 to antibodies was affected by the presence of the spore appendage, suggesting that different mechanisms of assembly of the exosporium layer might be implicated in each spore phenotype. Collectively, this work contributes to our understanding of the associations between spore coat and exosporium proteins, and how these associations affect the assembly of the spore outer layers. These results have implications for the development of anti-infecting agents targeting C. difficile spores. Full article
(This article belongs to the Special Issue Exploration of Intrinsic Resistance in Bacteria)
Show Figures

Figure 1

15 pages, 3256 KiB  
Article
Rapid, Sensitive, and Selective Quantification of Bacillus cereus Spores Using xMAP Technology
by Houman Moteshareie, Walid M. Hassen, Yasmine Dirieh, Emma Groulx, Jan J. Dubowski and Azam F. Tayabali
Microorganisms 2022, 10(7), 1408; https://doi.org/10.3390/microorganisms10071408 - 13 Jul 2022
Cited by 5 | Viewed by 3049
Abstract
Bacillus cereus is a spore-forming ubiquitous bacterium notable as a food poisoning agent. Detection of B. cereus spores using selective media is laborious and non-specific. Herein, the quantitative detection of B. cereus spores was investigated with commercial antibodies and published aptamer sequences. Several [...] Read more.
Bacillus cereus is a spore-forming ubiquitous bacterium notable as a food poisoning agent. Detection of B. cereus spores using selective media is laborious and non-specific. Herein, the quantitative detection of B. cereus spores was investigated with commercial antibodies and published aptamer sequences. Several detection reagents were screened for affinity to Bacillus collagen-like protein A (BclA), an abundant exosporium glycoprotein. Sensitivity and selectivity toward B. cereus spores were tested using immunoassays and multi-analyte profiling (xMAP). A recombinant antibody developed in llama against BclA protein showed B. cereus spore selectivity and sensitivity between 102 and 105 spores/mL using xMAP. DNA aptamer sequences demonstrated sensitivity from 103 to 107 spores/mL and no cross-reaction to B. megaterium and B. subtilis. Selectivity for B. cereus spores was also demonstrated in a mixture of several diverse microorganisms and within a food sample with no compromise of sensitivity. As proof of concept for multiplexed measurement of human pathogens, B. cereus and three other microorganisms, E. coli, P. aeruginosa, and S. cerevisiae, were simultaneously detected using xMAP. These data support the development of a rapid, sensitive, and selective system for quantitation of B. cereus spores and multiplexed monitoring of human pathogens in complex matrices. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Graphical abstract

17 pages, 3588 KiB  
Article
Sporulation Strategies and Potential Role of the Exosporium in Survival and Persistence of Clostridium botulinum
by Inês M. Portinha, François P. Douillard, Hannu Korkeala and Miia Lindström
Int. J. Mol. Sci. 2022, 23(2), 754; https://doi.org/10.3390/ijms23020754 - 11 Jan 2022
Cited by 14 | Viewed by 8536
Abstract
Clostridium botulinum produces the botulinum neurotoxin that causes botulism, a rare but potentially lethal paralysis. Endospores play an important role in the survival, transmission, and pathogenesis of C. botulinum. C. botulinum strains are very diverse, both genetically and ecologically. Group I strains [...] Read more.
Clostridium botulinum produces the botulinum neurotoxin that causes botulism, a rare but potentially lethal paralysis. Endospores play an important role in the survival, transmission, and pathogenesis of C. botulinum. C. botulinum strains are very diverse, both genetically and ecologically. Group I strains are terrestrial, mesophilic, and produce highly heat-resistant spores, while Group II strains can be terrestrial (type B) or aquatic (type E) and are generally psychrotrophic and produce spores of moderate heat resistance. Group III strains are either terrestrial or aquatic, mesophilic or slightly thermophilic, and the heat resistance properties of their spores are poorly characterized. Here, we analyzed the sporulation dynamics in population, spore morphology, and other spore properties of 10 C. botulinum strains belonging to Groups I–III. We propose two distinct sporulation strategies used by C. botulinum Groups I–III strains, report their spore properties, and suggest a putative role for the exosporium in conferring high heat resistance. Strains within each physiological group produced spores with similar characteristics, likely reflecting adaptation to respective environmental habitats. Our work provides new information on the spores and on the population and single-cell level strategies in the sporulation of C. botulinum. Full article
(This article belongs to the Special Issue Bacterial Endospores: Stress Resistance and Germination)
Show Figures

Figure 1

18 pages, 1868 KiB  
Article
Insights into the Structure and Protein Composition of Moorella thermoacetica Spores Formed at Different Temperatures
by Tiffany Malleck, Fatima Fekraoui, Isabelle Bornard, Céline Henry, Eloi Haudebourg, Stella Planchon and Véronique Broussolle
Int. J. Mol. Sci. 2022, 23(1), 550; https://doi.org/10.3390/ijms23010550 - 4 Jan 2022
Cited by 1 | Viewed by 3397
Abstract
The bacterium Moorella thermoacetica produces the most heat-resistant spores of any spoilage-causing microorganism known in the food industry. Previous work by our group revealed that the resistance of these spores to wet heat and biocides was lower when spores were produced at a [...] Read more.
The bacterium Moorella thermoacetica produces the most heat-resistant spores of any spoilage-causing microorganism known in the food industry. Previous work by our group revealed that the resistance of these spores to wet heat and biocides was lower when spores were produced at a lower temperature than the optimal temperature. Here, we used electron microcopy to characterize the ultrastructure of the coat of the spores formed at different sporulation temperatures; we found that spores produced at 55 °C mainly exhibited a lamellar inner coat tightly associated with a diffuse outer coat, while spores produced at 45 °C showed an inner and an outer coat separated by a less electron-dense zone. Moreover, misarranged coat structures were more frequently observed when spores were produced at the lower temperature. We then analyzed the proteome of the spores obtained at either 45 °C or 55 °C with respect to proteins putatively involved in the spore coat, exosporium, or in spore resistance. Some putative spore coat proteins, such as CotSA, were only identified in spores produced at 55 °C; other putative exosporium and coat proteins were significantly less abundant in spores produced at 45 °C. Altogether, our results suggest that sporulation temperature affects the structure and protein composition of M. thermoacetica spores. Full article
(This article belongs to the Special Issue Bacterial Endospores: Stress Resistance and Germination)
Show Figures

Figure 1

16 pages, 3040 KiB  
Article
Nasal Immunization with the C-Terminal Domain of Bcla3 Induced Specific IgG Production and Attenuated Disease Symptoms in Mice Infected with Clostridioides difficile Spores
by Ana Raquel Maia, Rodrigo Reyes-Ramírez, Marjorie Pizarro-Guajardo, Anella Saggese, Ezio Ricca, Loredana Baccigalupi and Daniel Paredes-Sabja
Int. J. Mol. Sci. 2020, 21(18), 6696; https://doi.org/10.3390/ijms21186696 - 13 Sep 2020
Cited by 11 | Viewed by 3377
Abstract
Clostridioides difficile is a Gram-positive, spore-forming bacterium that causes a severe intestinal infection. Spores of this pathogen enter in the human body through the oral route, interact with intestinal epithelial cells and persist in the gut. Once germinated, the vegetative cells colonize the [...] Read more.
Clostridioides difficile is a Gram-positive, spore-forming bacterium that causes a severe intestinal infection. Spores of this pathogen enter in the human body through the oral route, interact with intestinal epithelial cells and persist in the gut. Once germinated, the vegetative cells colonize the intestine and produce toxins that enhance an immune response that perpetuate the disease. Therefore, spores are major players of the infection and ideal targets for new therapies. In this context, spore surface proteins of C. difficile, are potential antigens for the development of vaccines targeting C. difficile spores. Here, we report that the C-terminal domain of the spore surface protein BclA3, BclA3CTD, was identified as an antigenic epitope, over-produced in Escherichia coli and tested as an immunogen in mice. To increase antigen stability and efficiency, BclA3CTD was also exposed on the surface of B. subtilis spores, a mucosal vaccine delivery system. In the experimental conditions used in this study, free BclA3CTD induced antibody production in mice and attenuated some C. difficile infection symptoms after a challenge with the pathogen, while the spore-displayed antigen resulted less effective. Although dose regimen and immunization routes need to be optimized, our results suggest BclA3CTD as a potentially effective antigen to develop a new vaccination strategy targeting C. difficile spores. Full article
(This article belongs to the Special Issue Bacterial Spores)
Show Figures

Graphical abstract

11 pages, 1939 KiB  
Article
Structure-Immunogenicity Relationship of α- and β-Tetrasaccharide Glycoforms from Bacillus anthracis Exosporium and Fragments Thereof
by Riccardo De Ricco, Christy L. Ventura, Filippo Carboni, Rina Saksena, Pavol Kováč and Roberto Adamo
Molecules 2018, 23(8), 2079; https://doi.org/10.3390/molecules23082079 - 20 Aug 2018
Cited by 7 | Viewed by 4260
Abstract
The tetrasaccharide (2-O-methyl-4-(3-hydroxy-3-methylbutamido)-4,6-dideoxy-α-d-glucopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-l-rhamnopyranose) from the major exosporium protein (BclA) of Bacillus anthracis has been proposed as a target for development of diagnostics and immune therapy or prophylaxis. While the immunodominant character of the [...] Read more.
The tetrasaccharide (2-O-methyl-4-(3-hydroxy-3-methylbutamido)-4,6-dideoxy-α-d-glucopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→3)-α-l-rhamnopyranosyl-(1→2)-l-rhamnopyranose) from the major exosporium protein (BclA) of Bacillus anthracis has been proposed as a target for development of diagnostics and immune therapy or prophylaxis. While the immunodominant character of the anthrose residue has been previously elucidated, the role of the stereochemical configuration of the downstream rhamnose is unknown. Because the linkage of this residue to the GlcNAc bridging the glycan and the protein is lost during isolation of the tetrasaccharide, its α- and β-glycoforms have been synthesized. Herein, we prepared neoglycoconjugates from a series of fragments of the tetrasaccharide, including the complete α- and β-tetrasaccharide glycoforms, a 2-demethoxylated version of the α-tetrasaccharide, and the α- and β-trirhamnosides and CRM197. By immunization of mice, we showed that the anti α- and β-tetrasaccharide serum equally recognized both glycoforms. In contrast the sera produced following immunization with the α- and β-trirhamnoside fragments exhibited higher recognition for their own antigens than for their anomeric counterparts. The anti α- and β-tetrasaccharide sera recognized Sterne spores in a comparable fashion. ΔBclA spores not expressing the major exosporium protein were also recognized by the same sera, while mutants that produced the carbohydrate antigen with deletion of either rhamnose or anthrose were not. The tetrasaccharide could, therefore, be expressed in proteins other than BlcA. This work proves that α- and β-tetrasaccharide are equally potent immunogens. Full article
(This article belongs to the Special Issue Conjugate Vaccines from Carbohydrate Antigens)
Show Figures

Graphical abstract

Back to TopTop