Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = evolutionary process of collapse

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1461 KB  
Article
Vulnerability-Based Economic Loss Rate Assessment of a Frame Structure Under Stochastic Sequence Ground Motions
by Zheng Zhang, Yunmu Jiang and Zixin Liu
Buildings 2025, 15(15), 2584; https://doi.org/10.3390/buildings15152584 - 22 Jul 2025
Viewed by 359
Abstract
Modeling mainshock–aftershock ground motions is essential for seismic risk assessment, especially in regions experiencing frequent earthquakes. Recent studies have often employed Copula-based joint distributions or machine learning techniques to simulate the statistical dependency between mainshock and aftershock parameters. While effective at capturing nonlinear [...] Read more.
Modeling mainshock–aftershock ground motions is essential for seismic risk assessment, especially in regions experiencing frequent earthquakes. Recent studies have often employed Copula-based joint distributions or machine learning techniques to simulate the statistical dependency between mainshock and aftershock parameters. While effective at capturing nonlinear correlations, these methods are typically black box in nature, data-dependent, and difficult to generalize across tectonic settings. More importantly, they tend to focus solely on marginal or joint parameter correlations, which implicitly treat mainshocks and aftershocks as independent stochastic processes, thereby overlooking their inherent spectral interaction. To address these limitations, this study proposes an explicit and parameterized modeling framework based on the evolutionary power spectral density (EPSD) of random ground motions. Using the magnitude difference between a mainshock and an aftershock as the control variable, we derive attenuation relationships for the amplitude, frequency content, and duration. A coherence function model is further developed from real seismic records, treating the mainshock–aftershock pair as a vector-valued stochastic process and thus enabling a more accurate representation of their spectral dependence. Coherence analysis shows that the function remains relatively stable between 0.3 and 0.6 across the 0–30 Rad/s frequency range. Validation results indicate that the simulated response spectra align closely with recorded spectra, achieving R2 values exceeding 0.90 and 0.91. To demonstrate the model’s applicability, a case study is conducted on a representative frame structure to evaluate seismic vulnerability and economic loss. As the mainshock PGA increases from 0.2 g to 1.2 g, the structure progresses from slight damage to complete collapse, with loss rates saturating near 1.0 g. These findings underscore the engineering importance of incorporating mainshock–aftershock spectral interaction in seismic damage and risk modeling, offering a transparent and transferable tool for future seismic resilience assessments. Full article
(This article belongs to the Special Issue Structural Vibration Analysis and Control in Civil Engineering)
Show Figures

Figure 1

26 pages, 2204 KB  
Review
Recent Advances in Understanding R-Process Nucleosynthesis in Metal-Poor Stars and Stellar Systems
by Avrajit Bandyopadhyay and Timothy C. Beers
Universe 2025, 11(7), 229; https://doi.org/10.3390/universe11070229 - 11 Jul 2025
Cited by 1 | Viewed by 1396
Abstract
The rapid neutron-capture process (r-process) is responsible for the creation of roughly half of the elements heavier than iron, including precious metals like silver, gold, and platinum, as well as radioactive elements such as thorium and uranium. Despite its importance, the [...] Read more.
The rapid neutron-capture process (r-process) is responsible for the creation of roughly half of the elements heavier than iron, including precious metals like silver, gold, and platinum, as well as radioactive elements such as thorium and uranium. Despite its importance, the nature of the astrophysical sites where the r-process occurs, and the detailed mechanisms of its formation, remain elusive. The key to resolving these mysteries lies in the study of chemical signatures preserved in ancient, metal-poor stars. These stars, which formed in the early Universe, retain the chemical fingerprints of early nucleosynthetic events and offer a unique opportunity to trace the origins of r-process elements in the early Galaxy. In this review, we explore the state-of-the-art understanding of r-process nucleosynthesis, focusing on the sites, progenitors, and formation mechanisms. We discuss the role of potential astrophysical sites such as neutron star mergers, core-collapse supernovae, magneto-rotational supernovae, and collapsars, that can play a key role in producing the heavy elements. We also highlight the importance of studying these signatures through high-resolution spectroscopic surveys, stellar archaeology, and multi-messenger astronomy. Recent advancements, such as the gravitational wave event GW170817 and detection of the r-process in the ejecta of its associated kilonovae, have established neutron star mergers as one of the confirmed sites. However, questions remain regarding whether they are the only sites that could have contributed in early epochs or if additional sources are needed to explain the signatures of r-process found in the oldest stars. Additionally, there are strong indications pointing towards additional sources of r-process-rich nuclei in the context of Galactic evolutionary timescales. These are several of the outstanding questions that led to the formation of collaborative efforts such as the R-Process Alliance, which aims to consolidate observational data, modeling techniques, and theoretical frameworks to derive better constraints on deciphering the astrophysical sites and timescales of r-process enrichment in the Galaxy. This review summarizes what has been learned so far, the challenges that remain, and the exciting prospects for future discoveries. The increasing synergy between observational facilities, computational models, and large-scale surveys is poised to transform our understanding of r-process nucleosynthesis in the coming years. Full article
(This article belongs to the Special Issue Advances in Nuclear Astrophysics)
Show Figures

Figure 1

19 pages, 25099 KB  
Article
Study on Infrasonic Signal Characteristics and Energy Characterization of Damage and Failure in Red Sandstone Under Uniaxial Cyclic Loading and Unloading Conditions
by Min Zhang, Peng Zeng, Kui Zhao, Zhigang Lu, Xinmu Xu, Yan Yang and Zhouchao Liu
Appl. Sci. 2025, 15(9), 4893; https://doi.org/10.3390/app15094893 - 28 Apr 2025
Viewed by 351
Abstract
The instability and collapse of surrounding rock in mine goaf areas often lead to the destabilization of geological structures, surface subsidence, and mining safety accidents. To investigate the evolutionary mechanisms and precursor characteristics of rock instability and failure processes, uniaxial loading and cyclic [...] Read more.
The instability and collapse of surrounding rock in mine goaf areas often lead to the destabilization of geological structures, surface subsidence, and mining safety accidents. To investigate the evolutionary mechanisms and precursor characteristics of rock instability and failure processes, uniaxial loading and cyclic loading–unloading tests were conducted on red sandstone using a rock mechanics loading system. These experiments aimed to explore the mechanical behavior of the rock and the development process of internal fractures. The characteristics of infrasonic signals generated during red sandstone fracturing and the laws governing damage evolution were analyzed with an infrasonic acquisition system. The research results indicate that the infrasonic signal activity generated by rock under loading conditions can be characterized by three distinct stages, namely the relative stability period, the active period, and the pre-failure precursor period. Prior to peak strength, a substantial number of infrasonic signals are generated in rocks with significant activity; this characteristic is independent of the loading path but dependent on the stress magnitude. The variation in cumulative infrasonic energy reflects the accumulation of damage in rock specimens during the loading process, and as damage accumulates, the stress–strain curve exhibits hysteresis effects and nonlinear increases, accompanied by a rapid rise in infrasonic energy. By analyzing the characteristics of infrasonic parameters and characterizing the damage and its evolutionary features in red sandstone based on infrasonic energy, the internal crack damage evolution process in rocks can be effectively characterized. This approach provides theoretical foundations and technical support for early warning and monitoring prior to rock failure. Full article
Show Figures

Figure 1

21 pages, 5152 KB  
Article
GAGAN: Enhancing Image Generation Through Hybrid Optimization of Genetic Algorithms and Deep Convolutional Generative Adversarial Networks
by Despoina Konstantopoulou, Paraskevi Zacharia, Michail Papoutsidakis, Helen C. Leligou and Charalampos Patrikakis
Algorithms 2024, 17(12), 584; https://doi.org/10.3390/a17120584 - 19 Dec 2024
Cited by 2 | Viewed by 2419
Abstract
Generative Adversarial Networks (GANs) are highly effective for generating realistic images, yet their training can be unstable due to challenges such as mode collapse and oscillatory convergence. In this paper, we propose a novel hybrid optimization method that integrates Genetic Algorithms (GAs) to [...] Read more.
Generative Adversarial Networks (GANs) are highly effective for generating realistic images, yet their training can be unstable due to challenges such as mode collapse and oscillatory convergence. In this paper, we propose a novel hybrid optimization method that integrates Genetic Algorithms (GAs) to improve the training process of Deep Convolutional GANs (DCGANs). Specifically, GAs are used to evolve the discriminator’s weights, complementing the gradient-based learning typically employed in GANs. The proposed GAGAN model is trained on the CelebA dataset, using 2000 images, to generate 128 × 128 images, with the generator learning to produce realistic faces from random latent vectors. The discriminator, which classifies images as real or fake, is optimized not only through standard backpropagation, but also through a GA framework that evolves its weights via crossover, mutation, and selection processes. This hybrid method aims to enhance convergence stability and boost image quality by balancing local search from gradient-based methods with the global search capabilities of GAs. Experiments show that the proposed approach reduces generator loss and improves image fidelity, demonstrating that evolutionary algorithms can effectively complement deep learning techniques. This work opens new avenues for optimizing GAN training and enhancing performance in generative models. Full article
(This article belongs to the Special Issue Algorithms for Image Processing and Machine Vision)
Show Figures

Figure 1

20 pages, 10464 KB  
Article
Study on the Evolution Characteristics of Dam Failure Due to Flood Overtopping of Tailings Ponds
by Zhijie Duan, Jinglong Chen, Jing Xie, Quanming Li, Hong Zhang and Cheng Chen
Water 2024, 16(17), 2406; https://doi.org/10.3390/w16172406 - 27 Aug 2024
Viewed by 1835
Abstract
There has been a frequent occurrence of tailing dam failures in recent years, leading to severe repercussions. Flood overtopping is an important element contributing to these failures. Nevertheless, there is a scarcity of studies about the evolutionary mechanisms of dam breaches resulting from [...] Read more.
There has been a frequent occurrence of tailing dam failures in recent years, leading to severe repercussions. Flood overtopping is an important element contributing to these failures. Nevertheless, there is a scarcity of studies about the evolutionary mechanisms of dam breaches resulting from flood overtopping. In order to fill this knowledge vacuum, this study focused on the evolutionary characteristics and triggering mechanisms of overtopping failures, utilizing the Heshangyu tailings pond as a prototype. The process of overtopping breach evolution was revealed by the conduction of small-scale model testing. A scaled-down replica of the tailings pond was constructed at a ratio of 1:150, and a controlled experiment was conducted to simulate a breach in the dam caused by water overflowing. Based on the results, the following conclusions were drawn: (1) The rise in water level in the pond caused the tailings to become saturated, leading to liquefaction flow and local slope sliding at the initial dam. If the sediment-carrying capacity of the overflowing water exceeded the shear strength of the tailings, water erosion would accelerate landslides on the slope, generating a sand-laden water flow. (2) The breach was primarily influenced by water erosion, which subsequently resulted in both laterally widened and longitudinally deepened breach. As the breach expanded, the sand-carrying capacity of the water flow increased, leading to a faster rate of failure. The breach process of overtopping can be categorized into four distinct stages: gully formation stage, lateral broadening stage of gully, cracks and collapse on the slope surface, and stable stage of collapse. (3) The tailings from the outflow spread downstream in a radial pattern, forming an alluvial fan. Additionally, the depth of the deposited mud first increased and subsequently declined as the distance from the breach grew. The findings of this research provide an important basis for the prevention and control of tailings dam breach disasters due to overtopping. Full article
Show Figures

Figure 1

20 pages, 37072 KB  
Article
Comparative Anatomical Analysis of Bark Structure in 10 Quercus Species
by Changzhao Li, Xiaorui Yang, Songyang Chen, Yuxi Huang, Yushan Yang and Jian Qiu
Plants 2024, 13(13), 1871; https://doi.org/10.3390/plants13131871 - 6 Jul 2024
Cited by 5 | Viewed by 1778
Abstract
Detailed anatomical features of bark are used and interpreted in plant taxonomy, phylogenetics, and other areas of plant science. However, the delicate nature of bark cells, combined with the difficulty of obtaining high-quality sections and reliable data, limits the potential for utilizing and [...] Read more.
Detailed anatomical features of bark are used and interpreted in plant taxonomy, phylogenetics, and other areas of plant science. However, the delicate nature of bark cells, combined with the difficulty of obtaining high-quality sections and reliable data, limits the potential for utilizing and processing bark. In this study, the anatomical structure of the bark of 10 Quercus species growing in Yunnan Province, China, was characterized in detail. The results indicate that the anatomical features of the barks of 10 Quercus spp. show a certain degree of consistency. Specifically, sieve tubes are distributed in solitary elements or in small groups, mostly as compound sieve plates containing 2–8 sieve areas, suggesting that Quercus spp. may occupy a conservative evolutionary position. Additionally, for the first time, this study reports the presence of simple sieve plates in the sieve tube elements of Quercus phloem. Each sieve tube element has a companion cell on one side. The companion cell strands contain 2–7 cells. Axial parenchyma is diffuse, with parenchyma strands typically consisting of 4–7 cells; druses are present within chambered crystalliferous cells. Phloem rays are of two distinct sizes and often exhibit dilatation and sclerification, and the ray composition consists of procumbent cells. Sclerenchyma is composed of fibers and sclereids, both of which contain prismatic crystals. Most of the fibers are gelatinous fibers, which are distributed in discontinuous tangential bands of about five cells in width. Sclereids appear in clusters. The presence of sclerenchyma provides mechanical support to the bark, reducing the collapse of the phloem. Periderm usually consists of around 10–30 layers of phellem, and Quercus acutissima and Q. variabilis can reach dozens or hundreds layers. The phelloderm typically consists of from two to five layers, with Q. variabilis having up to ten or more layers. The filling tissue of lenticels in all Quercus species is nonstratified (homogeneous) and largely nonsuberized. Overall, this study enriches our comprehension of Quercus bark anatomy, elucidating evolutionary patterns, functional adaptations, and ecological ramifications within this significant botanical genus. Full article
(This article belongs to the Special Issue Microscopy Techniques in Plant Studies)
Show Figures

Figure 1

18 pages, 4887 KB  
Article
Buried Pipeline Collapse Dynamic Evolution Processes and Their Settlement Prediction Based on PSO-LSTM
by Yadong Zhou, Zhenchao Teng, Linlin Chi and Xiaoyan Liu
Appl. Sci. 2024, 14(1), 393; https://doi.org/10.3390/app14010393 - 31 Dec 2023
Cited by 6 | Viewed by 2218
Abstract
Based on the unit life and death technology, the dynamic evolution process of soil loss is considered, and a pipe-soil nonlinear coupling model of buried pipelines passing through the collapse area is constructed. The analysis shows that after the third layer of soil [...] Read more.
Based on the unit life and death technology, the dynamic evolution process of soil loss is considered, and a pipe-soil nonlinear coupling model of buried pipelines passing through the collapse area is constructed. The analysis shows that after the third layer of soil is lost, the existence of the “pipe-soil separation” phenomenon can be confirmed, which then supplements the assumption that “pipe-soil is always in contact” in the elastic foundation beam theory. Calculation of settlement deformation of buried pipelines It needs to be divided into two stages: cooperative deformation and non-cooperative deformation. Taking the settlement prediction of buried pipelines as the goal, the particle swarm algorithm (PSO) was used to optimize the number of neurons, Dropout, and Batch-size in the long short-term memory network (LSTM) structure. The optimization results were 60, 0.001, and 100, respectively. The PSO-LSTM model proposed in this article can accurately describe the dynamic evolution process of buried pipelines and has better prediction accuracy than the modified Gaussian curve method and LSTM neural network model. The use of this model can provide a reference for safety risk management, disaster early warning, and intelligent monitoring when buried pipelines suffer from soil collapse disasters. Full article
Show Figures

Figure 1

15 pages, 6166 KB  
Review
Evolved Pulsar Wind Nebulae
by Barbara Olmi
Universe 2023, 9(9), 402; https://doi.org/10.3390/universe9090402 - 1 Sep 2023
Cited by 7 | Viewed by 2120
Abstract
Based on the expected population of core collapse supernova remnants and the huge number of detected pulsars in the Galaxy, still representing only a fraction of the real population, pulsar wind nebulae are likely to constitute one of the largest classes of extended [...] Read more.
Based on the expected population of core collapse supernova remnants and the huge number of detected pulsars in the Galaxy, still representing only a fraction of the real population, pulsar wind nebulae are likely to constitute one of the largest classes of extended Galactic sources in many energy bands. For simple evolutionary reasons, the majority of the population is made of evolved systems, whose detection and identification are complicated by their reduced luminosity, the possible lack of X-ray emission (that fades progressively away with the age of the pulsar), and by their modified morphology with respect to young systems. Nevertheless they have gained renewed attention in recent years, following the detection of misaligned X-ray tails protruding from an increasing number of nebulae created by fast moving pulsars, and of extended TeV halos surrounding aged systems. Both these features are clear signs of an efficient escape of particles, with energy close to the maximum acceleration limit of the pulsar. Here we discuss the properties of those evolved systems and what we have understood about the process of particle escape, and the formation of observed features. Full article
(This article belongs to the Special Issue Pulsar Wind Nebulae)
Show Figures

Figure 1

12 pages, 280 KB  
Article
Global Discontinuity: Time for a Paradigm Shift in Global Scenario Analysis
by Dale S. Rothman, Paul Raskin, Kasper Kok, John Robinson, Jill Jäger, Barry Hughes and Paul C. Sutton
Sustainability 2023, 15(17), 12950; https://doi.org/10.3390/su151712950 - 28 Aug 2023
Cited by 4 | Viewed by 2169
Abstract
The evolutionary paths of social-ecological systems comprise periods of structural continuity punctuated by moments of convulsive change. Various forms of systemic global shock could materialize in the coming decades, triggered by the climate crisis, social disruption, economic breakdown, financial collapse, nuclear conflict, or [...] Read more.
The evolutionary paths of social-ecological systems comprise periods of structural continuity punctuated by moments of convulsive change. Various forms of systemic global shock could materialize in the coming decades, triggered by the climate crisis, social disruption, economic breakdown, financial collapse, nuclear conflict, or pandemics. The unfolding COVID-19 pandemic stands as a real-time example of an interruption of historic continuity. More hopefully, deep institutional and cultural shifts could rapidly usher in more resilient forms of global civilization. These plausible possibilities challenge scenario studies to spotlight discontinuous futures, an imperative that has not been adequately met. Several factors—for example, gradualist theories of change, scientific reticence, the lure of quantitative tractability, embeddedness in policymaking processes—have rendered mainstream scenario analysis ill-suited to the task. The emphasis on continuity fails to alert decision makers and the public to the risks and opportunities latent in our singular historical moment. A shift to a paradigm that foregrounds discontinuity is long overdue, calling for efforts to broaden the base of persons involved; devote more attention to balancing narrative storytelling and a broader range of quantitative methods; and apply and develop methods to explicitly consider discontinuities in global scenario development. Full article
12 pages, 1378 KB  
Article
PEGANs: Phased Evolutionary Generative Adversarial Networks with Self-Attention Module
by Yu Xue, Weinan Tong, Ferrante Neri and Yixia Zhang
Mathematics 2022, 10(15), 2792; https://doi.org/10.3390/math10152792 - 5 Aug 2022
Cited by 13 | Viewed by 2870
Abstract
Generative adversarial networks have made remarkable achievements in generative tasks. However, instability and mode collapse are still frequent problems. We improve the framework of evolutionary generative adversarial networks (E-GANs), calling it phased evolutionary generative adversarial networks (PEGANs), and adopt a self-attention module to [...] Read more.
Generative adversarial networks have made remarkable achievements in generative tasks. However, instability and mode collapse are still frequent problems. We improve the framework of evolutionary generative adversarial networks (E-GANs), calling it phased evolutionary generative adversarial networks (PEGANs), and adopt a self-attention module to improve upon the disadvantages of convolutional operations. During the training process, the discriminator will play against multiple generators simultaneously, where each generator adopts a different objective function as a mutation operation. Every time after the specified number of training iterations, the generator individuals will be evaluated and the best performing generator offspring will be retained for the next round of evolution. Based on this, the generator can continuously adjust the training strategy during training, and the self-attention module also enables the model to obtain the modeling ability of long-range dependencies. Experiments on two datasets showed that PEGANs improve the training stability and are competitive in generating high-quality samples. Full article
(This article belongs to the Special Issue Evolutionary Computation for Deep Learning and Machine Learning)
Show Figures

Figure 1

15 pages, 644 KB  
Perspective
Evolutionary Perspectives on the Commons: A Model of Commonisation and Decommonisation
by Prateep Kumar Nayak and Fikret Berkes
Sustainability 2022, 14(7), 4300; https://doi.org/10.3390/su14074300 - 5 Apr 2022
Cited by 8 | Viewed by 3014
Abstract
Commons (or common-pool resources) are inherently dynamic. Factors that appear to contribute to the evolution of a stable commons regime at one time and place may undergo change that results in the collapse of the commons at another. The factors involved can be [...] Read more.
Commons (or common-pool resources) are inherently dynamic. Factors that appear to contribute to the evolution of a stable commons regime at one time and place may undergo change that results in the collapse of the commons at another. The factors involved can be very diverse. Economic, social, environmental and political conditions and various drivers may lead to commonisation, a process through which a resource is converted into a joint-use regime under commons institutions and collective action. Conversely, they may lead to decommonisation, a process through which a commons loses these essential characteristics. Evolution through commonisation may be manifested as adaptation or fine-tuning over time. They may instead result in the replacement of one kind of property rights regime by another, as in the enclosure movement in English history that resulted in the conversion of sheep grazing commons into privatized agricultural land. These processes of change can be viewed from an evolutionary perspective using the concepts of commonisation and decommonisation, and theorized as a two-way process over time, with implications for the sustainability of joint resources from local to global. Full article
(This article belongs to the Special Issue Environmental Policy and Governance: Evolutionary Perspectives)
Show Figures

Figure 1

15 pages, 37980 KB  
Article
Energy Characteristics of Acoustic Emission at the Volume-Expansion Point of a Rock Bridge: A New Insight into the Evolutionary Mechanism of Coastal Cliff Collapse
by Hongran Chen, Mengyang Zhai and Lei Xue
J. Mar. Sci. Eng. 2021, 9(12), 1338; https://doi.org/10.3390/jmse9121338 - 28 Nov 2021
Cited by 3 | Viewed by 2091
Abstract
The recession of a coast can destabilize coastal cliffs. The stability of a cliff is controlled by a rock bridge. Identifying the volume-expansion point of rock bridges is crucial to assess cliff stability, but currently there are few identifying methods. Using a numerical [...] Read more.
The recession of a coast can destabilize coastal cliffs. The stability of a cliff is controlled by a rock bridge. Identifying the volume-expansion point of rock bridges is crucial to assess cliff stability, but currently there are few identifying methods. Using a numerical analytical tool, we investigate the acoustic emission characteristics during shear tests on rock bridges. Acoustic emission events with a high energy level, i.e., characteristic events which occur at the volume-expansion point of rock bridges, can indicate this point. The characteristic events, the mainshock (the maximum event corresponding to rock-bridge rupture), and the smaller events between them constitute a special activity pattern, as the micro-seismicity during the evolutionary process of a coastal cliff collapse in Mesnil-Val, NW France showed. This pattern arises in rock bridges with different mechanical properties and geometry, or under different loading conditions. Although the energy level of characteristic events and mainshocks changes with the variation of the conditions, the difference of their energy level is approximately constant. The spatial distribution of characteristic events and mainshocks can indicate the location of rock bridges. These findings help to better understand the evolutionary mechanism of collapses and provide guidelines for monitoring the stability of coastal cliffs. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Graphical abstract

15 pages, 6475 KB  
Article
The Spatiotemporal Relationship between Landslides and Mechanisms at the Heifangtai Terrace, Northwest China
by Tianfeng Gu, Jiading Wang, Henry Lin, Qiang Xue, Bin Sun, Jiaxu Kong, Jiaxing Sun, Chenxing Wang, Fanchen Zhang and Xiao Wang
Water 2021, 13(22), 3275; https://doi.org/10.3390/w13223275 - 18 Nov 2021
Cited by 11 | Viewed by 3134
Abstract
Landslide disasters have occurred frequently in the Chinese Loess Plateau (CLP) due to increased agricultural irrigation. To explore the spatiotemporal relationship between landslides and mechanisms at the Heifangtai terrace, the HFT irrigated area was selected as a typical case study to investigate the [...] Read more.
Landslide disasters have occurred frequently in the Chinese Loess Plateau (CLP) due to increased agricultural irrigation. To explore the spatiotemporal relationship between landslides and mechanisms at the Heifangtai terrace, the HFT irrigated area was selected as a typical case study to investigate the fundamental mechanism of the irrigation-induced landslide in the CLP. Multi-temporal remote sensing images, topographic maps, and unmanned aerial vehicle (UAV) photogrammetry data were used to investigate the evolution progress of landslides. Moreover, the evolution mechanism was discussed through topographic analysis, field monitoring, and laboratory testing. The results showed that erosion, collapse, and sliding had occurred at different scales and at different locations in the past 50 years. With an average retrogressive speed of 9.6 × 103 m2 per year, the tableland decreased by 4.9 × 105 m2 from 1967 to 2018, accounting for about 4.5% of its total area. Over 20 landslides and collapses were extracted in the Dangchuan section in the past four years. More than 5.48 × 105 m3 of loess slipped with an average volume of 381 m3 per day. The evolutionary process of the irrigation-induced landslide, which features retrogression, lateral extension, and clustering, began with local failure and ended in a series of slidings. The increase of groundwater level was a slow process, which is the reason for the lagged occurrence of the landslide. The influence of rainfall and irrigation on slope stability was greater than that of the periodic change of the groundwater level. The triggering effect of irrigation and rainfall on the landslide had a time lag due to slow loess infiltration, and the time response among irrigation, rainfall, and groundwater level was 4–6 months. Our findings provide guidance, concerning the planning and controlling of landslide disasters, which is of critical value for human and construction safety. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

18 pages, 7578 KB  
Article
Integrated Field Surveying and Land Surface Quantitative Analysis to Assess Landslide Proneness in the Conero Promontory Rocky Coast (Italy)
by Francesco Troiani, Salvatore Martino, Gian Marco Marmoni, Marco Menichetti, Davide Torre, Giulia Iacobucci and Daniela Piacentini
Appl. Sci. 2020, 10(14), 4793; https://doi.org/10.3390/app10144793 - 13 Jul 2020
Cited by 14 | Viewed by 3651
Abstract
Rock slopes involved in extensive landslide processes are often characterized by complex morphodynamics acting at different scales of space and time, responsible for different evolutionary scenarios. Mass Rock Creep (MRC) is a critical process for long-term geomorphological evolution of slopes and can likewise [...] Read more.
Rock slopes involved in extensive landslide processes are often characterized by complex morphodynamics acting at different scales of space and time, responsible for different evolutionary scenarios. Mass Rock Creep (MRC) is a critical process for long-term geomorphological evolution of slopes and can likewise characterize actively retreating coastal cliffs where, in addition, landslides of different typologies and size superimpose in space and time to marine processes. The rocky coast at the Conero promontory (central Adriatic Sea, Italy) offers a rare opportunity for better understanding the predisposing role of the morphostructural setting on coastal slope instability on a long-time scale. In fact, the area presents several landslides of different typologies and size and state of activity, together with a wide set of landforms and structural features effective for better comprehending the evolution mechanisms of slope instability processes. Different investigation methods were implemented; in particular, traditional geomorphological and structural field surveys were combined with land surface quantitative analysis based on a Digital Elevation Model (DEM) with ground-resolution of 2 m. The results obtained demonstrate that MRC involves the entire coastal slope, which can be zoned in two distinct sectors as a function of a different morphostructural setting responsible for highly differentiated landslide processes. Therefore, at the long-time scale, two different morphodynamic styles can be depicted along the coastal slopes that correspond to specific evolutionary scenarios. The first scenario is characterized by MRC-driven, time-dependent slope processes involving the entire slope, whereas the second one includes force-driven slope processes acting at smaller space–time scales. The Conero promontory case study highlights that the relationships between slope shape and structural setting of the deforming areas are crucial for reaching critical volumes to induce generalized slope collapse as the final stage of the MRC process. The results from this study stress the importance of understanding the role of morphostructures as predisposing conditions for generalized slope failures along rocky coasts involved in MRC. The findings discussed here suggest the importance of the assessment of the slope instability at the long time scale for a better comprehension of the present-day slope dynamics and its major implications for landslide monitoring strategies and the hazard mitigation strategies. Full article
(This article belongs to the Special Issue Novel Approaches in Landslide Monitoring and Data Analysis)
Show Figures

Figure 1

16 pages, 1290 KB  
Article
China’s Land-Use Changes during the Past 300 Years: A Historical Perspective
by Lijuan Miao, Feng Zhu, Zhanli Sun, John C. Moore and Xuefeng Cui
Int. J. Environ. Res. Public Health 2016, 13(9), 847; https://doi.org/10.3390/ijerph13090847 - 25 Aug 2016
Cited by 39 | Viewed by 8011
Abstract
Understanding the processes of historical land-use change is crucial to the research of global environmental sustainability. Here we examine and attempt to disentangle the evolutionary interactions between land-use change and its underlying causes through a historical lens. We compiled and synthesized historical land-use [...] Read more.
Understanding the processes of historical land-use change is crucial to the research of global environmental sustainability. Here we examine and attempt to disentangle the evolutionary interactions between land-use change and its underlying causes through a historical lens. We compiled and synthesized historical land-use change and various biophysical, political, socioeconomic, and technical datasets, from the Qing dynasty to modern China. The analysis reveals a clear transition period between the 1950s and the 1980s. Before the 1950s, cropland expanded while forested land diminished, which was also accompanied by increasing population; after the 1980s land-use change exhibited new characteristics: changes in cropland, and decoupling of forest from population as a result of agricultural intensification and globalization. Chinese political policies also played an important and complex role, especially during the 1950s–1980s transition periods. Overall, climate change plays an indirect but fundamental role in the dynamics of land use via a series of various cascading effects such as shrinking agricultural production proceeding to population collapse and outbreaks of war. The expected continuation of agricultural intensification this century should be able to support increasing domestic demand for richer diets, but may not be compatible with long-term environmental sustainability. Full article
Show Figures

Figure 1

Back to TopTop