Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = evaluation of BA satellite products

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5328 KiB  
Article
TSSA-NBR: A Burned Area Extraction Method Based on Time-Series Spectral Angle with Full Spectral Shape
by Dongyi Liu, Yonghua Qu, Xuewen Yang and Qi Zhao
Remote Sens. 2025, 17(13), 2283; https://doi.org/10.3390/rs17132283 - 3 Jul 2025
Viewed by 371
Abstract
Wildfires threaten ecosystems, biodiversity, and human livelihood while exacerbating climate change. Accurate identification and monitoring of burned areas (BA) are critical for effective post-fire recovery and management. Although satellite multi-spectral imagery offers a practical solution for BA monitoring, existing methods often prioritize specific [...] Read more.
Wildfires threaten ecosystems, biodiversity, and human livelihood while exacerbating climate change. Accurate identification and monitoring of burned areas (BA) are critical for effective post-fire recovery and management. Although satellite multi-spectral imagery offers a practical solution for BA monitoring, existing methods often prioritize specific spectral bands while neglecting full spectral shape information, which encapsulates overall spectral characteristics. This limitation compromises adaptability to diverse vegetation types and environmental conditions, particularly across varying spatial scales. To address these challenges, we propose the time-series spectral-angle-normalized burn index (TSSA-NBR). This unsupervised BA extraction method integrates normalized spectral angle and normalized burn ratio (NBR) to leverage full spectral shape and temporal features derived from Sentinel-2 time-series data. Seven globally distributed study areas with diverse climatic conditions and vegetation types were selected to evaluate the method’s adaptability and scalability. Evaluations compared Sentinel-2-derived BA with moderate-resolution products and high-resolution PlanetScope-derived BA, focusing on spatial scale and methodological performance. TSSA-NBR achieved a Dice Coefficient (DC) of 87.81%, with commission (CE) and omission errors (OE) of 8.52% and 15.58%, respectively, demonstrating robust performance across all regions. Across diverse land cover types, including forests, grasslands, and shrublands, TSSA-NBR exhibited high adaptability, with DC values ranging from 0.53 to 0.97, CE from 0.03 to 0.27, and OE from 0.02 to 0.61. The method effectively captured fire scars and outperformed band-specific and threshold-dependent approaches by integrating spectral shape features with fire indices, establishing a data-driven framework for BA detection. These results underscore its potential for fire monitoring and broader applications in detecting surface anomalies and environmental disturbances, advancing global ecological monitoring and management strategies. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Graphical abstract

21 pages, 6799 KiB  
Article
Spatial–Temporal Dynamics of Vegetation Indices in Response to Drought Across Two Traditional Olive Orchard Regions in the Iberian Peninsula
by Nazaret Crespo, Luís Pádua, Paula Paredes, Francisco J. Rebollo, Francisco J. Moral, João A. Santos and Helder Fraga
Sensors 2025, 25(6), 1894; https://doi.org/10.3390/s25061894 - 18 Mar 2025
Cited by 1 | Viewed by 1099
Abstract
This study investigates the spatial–temporal dynamics of vegetation indices in olive orchards across two traditionally rainfed regions of the Iberian Peninsula, namely the “Trás-os-Montes” (TM) agrarian region in Portugal and the Badajoz (BA) province in Spain, in response to drought conditions. Using satellite-derived [...] Read more.
This study investigates the spatial–temporal dynamics of vegetation indices in olive orchards across two traditionally rainfed regions of the Iberian Peninsula, namely the “Trás-os-Montes” (TM) agrarian region in Portugal and the Badajoz (BA) province in Spain, in response to drought conditions. Using satellite-derived vegetation indices, derived from the Harmonized Landsat Sentinel-2 project (HLSL30), such as the Normalized Difference Moisture Index (NDMI) and Soil-Adjusted Vegetation Index (SAVI), this study evaluates the impact of drought periods on olive tree growing conditions. The Mediterranean Palmer Drought Severity Index (MedPDSI), specifically developed for olive trees, was selected to quantify drought severity, and impacts on vegetation dynamics were assessed throughout the study period (2015–2023). The analysis reveals significant differences between the regions, with BA experiencing more intense drought conditions, particularly during the warm season, compared to TM. Seasonal variability in vegetation dynamics is clearly linked to MedPDSI, with lagged responses stronger in the previous two-months. Both the SAVI and the NDMI show vegetation vigour declines during dry seasons, particularly in the years of 2017 and 2022. The findings reported in this study highlight the vulnerability of rainfed olive orchards in BA to long-term drought-induced stress, while TM appears to have slightly higher resilience. The study underscores the value of combining satellite-derived vegetation indices with drought indicators for the effective monitoring of olive groves and to improve water use management practices in response to climate change. These insights are crucial for developing adaptation measures that ensure the sustainability, resiliency, and productivity of rainfed olive orchards in the Iberian Peninsula, particularly under climate change scenarios. Full article
Show Figures

Graphical abstract

25 pages, 21085 KiB  
Article
Evaluation and Projection of Global Burned Area Based on Global Climate Models and Satellite Fire Product
by Xueyan Wang, Zhenhua Di, Wenjuan Zhang, Shenglei Zhang, Huiying Sun, Xinling Tian, Hao Meng and Xurui Wang
Remote Sens. 2024, 16(24), 4751; https://doi.org/10.3390/rs16244751 - 20 Dec 2024
Cited by 1 | Viewed by 1090
Abstract
Fire plays a critical role in both the formation and degradation of ecosystems; however, there are still significant uncertainties in the estimation of burned areas (BAs). This study systematically evaluated the performance of ten global climate models (GCMs) in simulating global and regional [...] Read more.
Fire plays a critical role in both the formation and degradation of ecosystems; however, there are still significant uncertainties in the estimation of burned areas (BAs). This study systematically evaluated the performance of ten global climate models (GCMs) in simulating global and regional BA during a historical period (1997–2014) using the Global Fire Emissions Database version 4.1s (GFED4s) satellite fire product. Then, six of the best models were combined using Bayesian Model Averaging (BMA) to predict future BA under three Shared Socioeconomic Pathways (SSPs). The results show that the NorESM2-LM model excelled in simulating both global annual and monthly BA among the GCMs. GFDL-ESM4 and UKESM1-0-LL of the GCMs had the highest Pearson’s correlation coefficient (PCC), but they also exhibited the most significant overestimation of monthly BA variations. The BA fraction (BAF) for GCMs was over 90% for small fires (<1%). For small fires (2~10%), GFDL-ESM4(j) and UKESM1-0-LL(k) outperformed the other models. For medium fires (10–50%), CESM2-WACCM-FV2(e) was closest to GFED4s. There were large biases for all models for large fires (>50%). After evaluation and screening, six models (CESM2-WACCM-FV2, NorESM2-LM, CMCC-ESM2, CMCC-CM2-SR5, GFDL-ESM4, and UKESM1-0-LL) were selected for weighting in an optimal ensemble simulation using BMA. Based on the optimal ensemble, future projections indicated a continuous upward trend across all three SSPs from 2015 to 2100, except for a slight decrease in SSP126 between 2071 and 2100. It was found that as the emission scenarios intensify, the area experiencing a significant increase in BA will expand considerably in the future, with a generally high level of reliability in these projections across most regions. This study is crucial for understanding the impact of climate change on wildfires and for informing fire management policies in fire-prone areas in the future. Full article
Show Figures

Graphical abstract

19 pages, 13534 KiB  
Article
Evaluating the Abilities of Satellite-Derived Burned Area Products to Detect Forest Burning in China
by Xueyan Wang, Zhenhua Di and Jianguo Liu
Remote Sens. 2023, 15(13), 3260; https://doi.org/10.3390/rs15133260 - 25 Jun 2023
Cited by 2 | Viewed by 1852
Abstract
Fire plays a prominent role in the construction and destruction of ecosystems, and the accurate estimation of the burned area (BA) after a fire occurrence is of great significance to protect ecosystems and save people’s lives and property. This study evaluated the performances [...] Read more.
Fire plays a prominent role in the construction and destruction of ecosystems, and the accurate estimation of the burned area (BA) after a fire occurrence is of great significance to protect ecosystems and save people’s lives and property. This study evaluated the performances of three publicly available BA satellite products (GFED4, MCD64CMQ, and FireCCI5.1) in detecting Chinese forest fire burning from 2001 to 2016 across different time scales (yearly, monthly, and seasonally) and spatial scales (regional and provincial). The reference data were derived from the monthly China Forestry Statistical Yearbook (CFSY), and they were mainly used to evaluate the detection ability of each of the three BA products in the three major forest fire areas of China consisting of the Northeast (NE), Southwest (SW), and Southeast (SE) regions. The main results are as follows: (1) A significant declining BA trend was demonstrated in the whole study area and in the NE and SE subregions. Specifically, the slopes for the whole area ranged from −3821.1 ha/year for MCD64CMQ to −33,218 ha/year for the CFSY, the slopes for the NE region ranged from −3821.1 ha/year for MCD64CMQ to −33,218 ha/year for the CFSY, and the slopes for the SE region ranged from −594.24 ha/year for GFED4 to −3162.1 ha/year for the CFSY. The BA in China was mainly dominated by forest fires in the NE region, especially in 2003 and 2006 when this region accounted for 90% and 87% of occurrences, respectively. (2) Compared with the CFSY, GFED4 had the best performance at the yearly scale with an RMSE of 23.9 × 104 ha/year and CC of 0.83. Similarly, at the monthly scale, GFED4 also had the best performance for the three regions, with the lowest RMSE ranging from 0.33 × 104 to 5.4 × 104 ha/month—far lower than that of FireCC5.1 which ranged from 1.16 × 104 to 8.56 × 104 ha/month (except for the SE region where it was slightly worse than MCD64CMQ). At the seasonal scale, GFFD4 had the best performance in spring and winter. It was also noted that the fewer BAs in summer made the differences among the products insignificant. (3) Spatially, GFED4 had the best performance in RMSEs for all the provinces of the three regions, in CCs for the provinces of the SW and SE regions, and in MEs for the provinces of the SE region. (4) All three products had stronger detection abilities for severe and disaster fires than for common fires. Additionally, GFED4 had a more consistent number of months with the CFSY than the other products in the NE region. Moreover, the conclusion that GFED4 had the best performance in the China region was also proved using other validated BA datasets. These results will help us to understand the BA detection abilities of the satellite products in China and promote the further development of multi-source satellite fire data fusion. Full article
(This article belongs to the Special Issue Remote Sensing of Burnt Area II)
Show Figures

Figure 1

16 pages, 8604 KiB  
Article
Analysis of Trends in the FireCCI Global Long Term Burned Area Product (1982–2018)
by Gonzalo Otón, José Miguel C. Pereira, João M. N. Silva and Emilio Chuvieco
Fire 2021, 4(4), 74; https://doi.org/10.3390/fire4040074 - 17 Oct 2021
Cited by 19 | Viewed by 4979
Abstract
We present an analysis of the spatio-temporal trends derived from long-term burned area (BA) data series. Two global BA products were included in our analysis, the FireCCI51 (2001–2019) and the FireCCILT11 (1982–2018) datasets. The former was generated from Moderate Resolution Imaging Spectroradiometer (MODIS) [...] Read more.
We present an analysis of the spatio-temporal trends derived from long-term burned area (BA) data series. Two global BA products were included in our analysis, the FireCCI51 (2001–2019) and the FireCCILT11 (1982–2018) datasets. The former was generated from Moderate Resolution Imaging Spectroradiometer (MODIS) 250 m reflectance data, guided by 1 km active fires. The FireCCILT11 dataset was generated from Land Long-Term Data Record data (0.05°), which provides a consistent time series for Advanced Very High Resolution Radiometer images, acquired from the NOAA satellite series. FireCCILT11 is the longest time series of a BA product currently available, making it possible to carry out temporal analysis of long-term trends. Both products were developed under the FireCCI project of the European Space Agency. The two datasets were pre-processed to correct for temporal autocorrelation. Unburnable areas were removed and the lack of the FireCCILT11 data in 1994 was examined to evaluate the impact of this gap on the BA trends. An analysis and comparison between the two BA products was performed using a contextual approach. Results of the contextual Mann-Kendall analysis identified significant trends in both datasets, with very different regional values. The long-term series presented larger clusters than the short-term ones. Africa displayed significant decreasing trends in the short-term, and increasing trends in the long-term data series, except in the east. In the long-term series, Eastern Africa, boreal regions, Central Asia and South Australia showed large BA decrease clusters, and Western and Central Africa, South America, USA and North Australia presented BA increase clusters. Full article
Show Figures

Figure 1

37 pages, 13045 KiB  
Article
GNSS/INS-Assisted Structure from Motion Strategies for UAV-Based Imagery over Mechanized Agricultural Fields
by Seyyed Meghdad Hasheminasab, Tian Zhou and Ayman Habib
Remote Sens. 2020, 12(3), 351; https://doi.org/10.3390/rs12030351 - 21 Jan 2020
Cited by 47 | Viewed by 5939
Abstract
Acquired imagery by unmanned aerial vehicles (UAVs) has been widely used for three-dimensional (3D) reconstruction/modeling in various digital agriculture applications, such as phenotyping, crop monitoring, and yield prediction. 3D reconstruction from well-textured UAV-based images has matured and the user community has access to [...] Read more.
Acquired imagery by unmanned aerial vehicles (UAVs) has been widely used for three-dimensional (3D) reconstruction/modeling in various digital agriculture applications, such as phenotyping, crop monitoring, and yield prediction. 3D reconstruction from well-textured UAV-based images has matured and the user community has access to several commercial and opensource tools that provide accurate products at a high level of automation. However, in some applications, such as digital agriculture, due to repetitive image patterns, these approaches are not always able to produce reliable/complete products. The main limitation of these techniques is their inability to establish a sufficient number of correctly matched features among overlapping images, causing incomplete and/or inaccurate 3D reconstruction. This paper provides two structure from motion (SfM) strategies, which use trajectory information provided by an onboard survey-grade global navigation satellite system/inertial navigation system (GNSS/INS) and system calibration parameters. The main difference between the proposed strategies is that the first one—denoted as partially GNSS/INS-assisted SfM—implements the four stages of an automated triangulation procedure, namely, imaging matching, relative orientation parameters (ROPs) estimation, exterior orientation parameters (EOPs) recovery, and bundle adjustment (BA). The second strategy— denoted as fully GNSS/INS-assisted SfM—removes the EOPs estimation step while introducing a random sample consensus (RANSAC)-based strategy for removing matching outliers before the BA stage. Both strategies modify the image matching by restricting the search space for conjugate points. They also implement a linear procedure for ROPs’ refinement. Finally, they use the GNSS/INS information in modified collinearity equations for a simpler BA procedure that could be used for refining system calibration parameters. Eight datasets over six agricultural fields are used to evaluate the performance of the developed strategies. In comparison with a traditional SfM framework and Pix4D Mapper Pro, the proposed strategies are able to generate denser and more accurate 3D point clouds as well as orthophotos without any gaps. Full article
Show Figures

Graphical abstract

18 pages, 9116 KiB  
Article
Can We Go Beyond Burned Area in the Assessment of Global Remote Sensing Products with Fire Patch Metrics?
by Joana M. P. Nogueira, Julien Ruffault, Emilio Chuvieco and Florent Mouillot
Remote Sens. 2017, 9(1), 7; https://doi.org/10.3390/rs9010007 - 25 Dec 2016
Cited by 39 | Viewed by 9361
Abstract
Global burned area (BA) datasets from satellite Earth observations provide information for carbon emission and for Dynamic Global Vegetation Model (DGVM) benchmarking. Fire patch identification from pixel-level information recently emerged as an additional way of providing informative features about fire regimes through the [...] Read more.
Global burned area (BA) datasets from satellite Earth observations provide information for carbon emission and for Dynamic Global Vegetation Model (DGVM) benchmarking. Fire patch identification from pixel-level information recently emerged as an additional way of providing informative features about fire regimes through the analysis of patch size distribution. We evaluated the ability of global BA products to accurately represent morphological features of fire patches, in the fire-prone Brazilian savannas. We used the pixel-level burned area from LANDSAT images, as well as two global products: MODIS MCD45A1 and the European Space Agency (ESA) fire Climate Change Initiative (FIRE_CCI) product for the 2002–2009 time period. Individual fire patches were compared by linear regressions to test the consistency of global products as a source of burned patch shape information. Despite commission and omission errors respectively reaching 0.74 and 0.81 for ESA FIRE_CCI and 0.64 and 0.62 for MCD45A1 when compared to LANDSAT due to missing small fires, correlations between patch areas showed R2 > 0.6 for all comparisons, with a slope of 0.99 between ESA FIRE_CCI and MCD45A1 but a lower slope (0.6–0.8) when compared to the LANDSAT data. Shape complexity between global products was less correlated (R2 = 0.5) with lower values (R2 = 0.2) between global products and LANDSAT data, due to their coarser resolution. For the morphological features of the ellipse fitted over fire patches, R2 reached 0.6 for the ellipse’s eccentricity and varied from 0.4 to 0.8 for its azimuthal directional angle. We conclude that global BA products underestimate total BA as they miss small fires, but they also underestimate burned patch areas. Patch complexity is the least correlated variable, but ellipse features appear to provide information to be further used for quality product assessment, global pyrogeography or DGVM benchmarking. Full article
Show Figures

Graphical abstract

19 pages, 826 KiB  
Article
Assessing the Temporal Stability of the Accuracy of a Time Series of Burned Area Products
by Marc Padilla, Stephen V. Stehman, Javier Litago and Emilio Chuvieco
Remote Sens. 2014, 6(3), 2050-2068; https://doi.org/10.3390/rs6032050 - 6 Mar 2014
Cited by 37 | Viewed by 8313
Abstract
Temporal stability, defined as the change of accuracy through time, is one of the validation aspects required by the Committee on Earth Observation Satellites’ Land Product Validation Subgroup. Temporal stability was evaluated for three burned area products: MCD64, Globcarbon, and fire_cci. Traditional accuracy [...] Read more.
Temporal stability, defined as the change of accuracy through time, is one of the validation aspects required by the Committee on Earth Observation Satellites’ Land Product Validation Subgroup. Temporal stability was evaluated for three burned area products: MCD64, Globcarbon, and fire_cci. Traditional accuracy measures, such as overall accuracy and omission and commission error ratios, were computed from reference data for seven years (2001–2007) in seven study sites, located in Angola, Australia, Brazil, Canada, Colombia, Portugal, and South Africa. These accuracy measures served as the basis for the evaluation of temporal stability of each product. Nonparametric tests were constructed to assess different departures from temporal stability, specifically a monotonic trend in accuracy over time (Wilcoxon test for trend), and differences in median accuracy among years (Friedman test). When applied to the three burned area products, these tests did not detect a statistically significant temporal trend or significant differences among years, thus, based on the small sample size of seven sites, there was insufficient evidence to claim these products had temporal instability. Pairwise Wilcoxon tests comparing yearly accuracies provided a measure of the proportion of year-pairs with significant differences and these proportions of significant pairwise differences were in turn used to compare temporal stability between BA products. The proportion of year-pairs with different accuracy (at the 0.05 significance level) ranged from 0% (MCD64) to 14% (fire_cci), computed from the 21 year-pairs available. In addition to the analysis of the three real burned area products, the analyses were applied to the accuracy measures computed for four hypothetical burned area products to illustrate the properties of the temporal stability analysis for different hypothetical scenarios of change in accuracy over time. The nonparametric tests were generally successful at detecting the different types of temporal instability designed into the hypothetical scenarios. The current work presents for the first time methods to quantify the temporal stability of BA product accuracies and to alert product end-users that statistically significant temporal instabilities exist. These methods represent diagnostic tools that allow product users to recognize the potential confounding effect of temporal instability on analysis of fire trends and allow map producers to identify anomalies in accuracy over time that may lead to insights for improving fire products. Additionally, we suggest temporal instabilities that could hypothetically appear, caused by for example by failures or changes in sensor data or classification algorithms. Full article
(This article belongs to the Special Issue Quantifying the Environmental Impact of Forest Fires)
Show Figures

Back to TopTop