Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = ethyl 4-aminobenzoate (Et-PABA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1516 KB  
Article
Nano-TiO2 Phototoxicity in Fresh and Seawater: Daphnia magna and Artemia sp. as Proxies
by Ana C. Soler de la Vega, Alberto Cruz-Alcalde, Carmen Sans Mazón, Carlos Barata Martí and M. Silvia Diaz-Cruz
Water 2021, 13(1), 55; https://doi.org/10.3390/w13010055 - 30 Dec 2020
Cited by 13 | Viewed by 3611
Abstract
Nowadays, the industry is quite commonly using nanoparticles of titanium dioxide (nTiO2) especially in sunscreens, due to its higher reflective index in comparison to micron size TiO2. Its high demand causes its widespread environmental occurrence, thus damaging the environment. [...] Read more.
Nowadays, the industry is quite commonly using nanoparticles of titanium dioxide (nTiO2) especially in sunscreens, due to its higher reflective index in comparison to micron size TiO2. Its high demand causes its widespread environmental occurrence, thus damaging the environment. The aquatic ecosystems are the most vulnerable to contamination by nTiO2. Like other engineered nanoparticles, nTiO2 has demonstrated generation of reactive oxygen species (ROS) and reactive halogen species (RHS) in the aquatic environment under UV radiation. This study investigated the toxicity of nTiO2 towards two aquatic indicator organisms, one from freshwater (Daphnia magna) and the other from seawater (Artemia sp.), under simulated solar radiation (SSR). Daphnia magna and Artemia sp. were co-exposed in 16 h SSR and 8 h darkness cycles to different concentrations of nTiO2. The estimated EC50 at 48 h for D. magna was 3.16 mg nTiO2/L, whereas for A. sp. no toxic effects were observed. When we exposed these two organisms simultaneously to 48 h of prolonged SSR using higher nTiO2 concentrations, EC50 values of 7.60 mg/L and 5.59 mg/L nTiO2 for D. magna and A. sp., respectively, were obtained. A complementary bioassay was carried out with A. sp., by exposing this organism to a mixture of nTiO2 and organic UV filters (benzophenone 3 (oxybenzone, BP3), octocrylene (OC), and ethyl 4-aminobenzoate (EtPABA)), and then exposed to SSR. The results suggested that nTiO2 could potentially have negative impacts on these organisms, also this work outlines the different characteristics and interactions that may contribute to the mechanisms of environmental (in salted and freshwater) phototoxicity of nTiO2 and UV radiation, besides their interaction with organic compounds. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

11 pages, 1554 KB  
Article
Degradation of UV Filter Ethyl 4-Aminobenzoate (Et-PABA) Using a UV-Activated Persulfate Oxidation Process
by Ruirui Han, Qiang Wu, Chihao Lin, Lingfeng Zhang, Zhicai Zhai, Ping Sun, Yingsen Fang, Jiaqiang Wu and Hui Liu
Appl. Sci. 2019, 9(14), 2873; https://doi.org/10.3390/app9142873 - 18 Jul 2019
Cited by 10 | Viewed by 4487
Abstract
In this paper, the ultraviolet/persulfate (UV/PDS) combined oxidation process was used to remove the ethyl 4-aminobenzoate (Et-PABA), one of the typical 4-aminobenzoic acid (PABA)-type UV filters. The effects of various factors on the removal of Et-PABA using the UV/PDS process were investigated, and [...] Read more.
In this paper, the ultraviolet/persulfate (UV/PDS) combined oxidation process was used to remove the ethyl 4-aminobenzoate (Et-PABA), one of the typical 4-aminobenzoic acid (PABA)-type UV filters. The effects of various factors on the removal of Et-PABA using the UV/PDS process were investigated, and the degradation mechanisms of Et-PABA were explored. The results showed that the UV/PDS process can effectively remove 98.7% of Et-PABA within 30 min under the conditions: UV intensity of 0.92 mW·cm−2, an initial concentration of Et-PABA of 0.05 mM, and a PDS concentration of 2 mM. The removal rate of Et-PABA increased with the increase in PDS dosage within the experimental range, whereas humic acid (HA) had an inhibitory effect on Et-PABA removal. Six intermediates were identified based on HPLC–MS and degradation pathways were then proposed. It can be foreseen that the UV/PDS oxidation process has broad application prospects in water treatment. Full article
Show Figures

Graphical abstract

Back to TopTop