Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = equine umbilical vein endothelial cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2593 KiB  
Article
Bevacizumab Efficiently Inhibits VEGF-Associated Cellular Processes in Equine Umbilical Vein Endothelial Cells: An In Vitro Characterization
by Ulrike Lessiak, Barbara Pratscher, Alexander Tichy and Barbara Nell
Vet. Sci. 2023, 10(11), 632; https://doi.org/10.3390/vetsci10110632 - 26 Oct 2023
Cited by 3 | Viewed by 2986
Abstract
Anti-VEGF agents were found to have clinical implications for the successful treatment of vascular-driven diseases in humans. In this study, a detailed biological characterization of bevacizumab in a variety of in vitro assays was carried out to determine the effect of bevacizumab on [...] Read more.
Anti-VEGF agents were found to have clinical implications for the successful treatment of vascular-driven diseases in humans. In this study, a detailed biological characterization of bevacizumab in a variety of in vitro assays was carried out to determine the effect of bevacizumab on equine umbilical vein endothelial cells (EqUVEC). EqUVECs were harvested from umbilical cords of clinically healthy horses and exposed to different concentrations (1, 2, 4, 6, 8 mg/mL) of bevacizumab (Avastin®). Assays concerning the drug’s safety (cell viability and proliferation assay) and efficacy (cell tube formation assay, cell migration assay, and Vascular endothelial growth factor (VEGF) expression) were carried out reflecting multiple cellular processes. Bevacizumab significantly decreased VEGF expression at all concentrations over a 72 h period. No cytotoxic effect of bevacizumab on EqUVECs was observed at concentrations of 4 mg/mL bevacizumab or lower. Incubated endothelial cells showed delayed tube formation and bevacizumab efficiently inhibited cell migration in a dose-dependent manner. Bevacizumab potently inhibits VEGF-induced cellular processes and could be a promising therapeutic approach in vascular-driven diseases in horses. Full article
(This article belongs to the Section Veterinary Physiology, Pharmacology, and Toxicology)
Show Figures

Figure 1

19 pages, 1918 KiB  
Article
Study on NGF and VEGF during the Equine Perinatal Period—Part 2: Foals Affected by Neonatal Encephalopathy
by Nicola Ellero, Aliai Lanci, Vito Antonio Baldassarro, Giuseppe Alastra, Jole Mariella, Maura Cescatti, Carolina Castagnetti and Luciana Giardino
Vet. Sci. 2022, 9(9), 459; https://doi.org/10.3390/vetsci9090459 - 26 Aug 2022
Cited by 2 | Viewed by 3237
Abstract
Neonatal Encephalopathy (NE) may be caused by hypoxic ischemic insults or inflammatory insults and modified by innate protective or excitatory mechanisms. Understanding the underlying pathophysiology is important in formulating a rational approach to diagnosis. The preliminary aim was to clinically characterize a population [...] Read more.
Neonatal Encephalopathy (NE) may be caused by hypoxic ischemic insults or inflammatory insults and modified by innate protective or excitatory mechanisms. Understanding the underlying pathophysiology is important in formulating a rational approach to diagnosis. The preliminary aim was to clinically characterize a population of foals spontaneously affected by NE. The study aimed to: (i) evaluate nerve growth factor (NGF) and vascular endothelial growth factor (VEGF) levels in plasma samples obtained in the affected population at parturition from the mare’s jugular vein, umbilical cord vein and foal’s jugular vein, as well as in amniotic fluid; (ii) evaluate the NGF and VEGF content in the plasma of foals affected by NE during the first 72 h of life/hospitalization; (iii) evaluate NGF and VEGF levels at birth/admission in relation to selected mare’s and foal’s clinical parameters; (iv) evaluate the relationship between the two trophic factors and thyroid hormone levels (TT3 and TT4) in the first 72 h of life/hospitalization; and (v) assess the mRNA expression of NGF, VEGF and brain-derived neurotrophic factor (BDNF), and their cell surface receptors, in the placenta of mares that delivered foals affected by NE. Thirteen affected foals born from mares hospitalized for peripartum monitoring (group NE) and twenty affected foals hospitalized after birth (group exNE) were included in the study. Dosage of NGF and VEGF levels was performed using commercial ELISA kits, whereas NGF, VEGF, and BDNF placental gene expression was performed using a semi-quantitative real-time PCR. In group NE, NGF levels decreased significantly from T0 to T24 (p = 0.0447) and VEGF levels decreased significantly from T0 to T72 (p = 0.0234), whereas in group exNE, only NGF levels decreased significantly from T0 to T24 (p = 0.0304). Compared to healthy foals, a significant reduction of TT3 levels was observed in both NE (T24, p = 0.0066; T72 p = 0.0003) and exNE (T0, p = 0.0082; T24, p < 0.0001; T72, p < 0.0001) groups, whereas a significant reduction of TT4 levels was observed only in exNE group (T0, p = 0.0003; T24, p = 0.0010; T72, p = 0.0110). In group NE, NGF levels were positively correlated with both TT3 (p = 0.0475; r = 0.3424) and TT4 levels (p = 0.0063; r = 0.4589). In the placenta, a reduced expression of NGF in the allantois (p = 0.0033) and a reduced expression of BDNF in the amnion (p = 0.0498) were observed. The less pronounced decrease of the two trophic factors compared to healthy foals, their relationship with thyroid hormones over time, and the reduced expression of NGF and BDNF in placental tissues of mares that delivered affected foals, could be key regulators in the mechanisms of equine NE. Full article
(This article belongs to the Special Issue Neuropeptides: Role and Function in Species of Veterinary Interest)
Show Figures

Figure 1

17 pages, 2593 KiB  
Article
RETRACTED: PERK Is Critical for Alphavirus Nonstructural Protein Translation
by Bibha Dahal, Caitlin W. Lehman, Ivan Akhrymuk, Nicole R. Bracci, Lauren Panny, Michael D. Barrera, Nishank Bhalla, Jonathan L. Jacobs, Jonathan D. Dinman and Kylene Kehn-Hall
Viruses 2021, 13(5), 892; https://doi.org/10.3390/v13050892 - 12 May 2021
Cited by 7 | Viewed by 4400 | Retraction
Abstract
Venezuelan equine encephalitis virus (VEEV) is an alphavirus that causes encephalitis. Previous work indicated that VEEV infection induced early growth response 1 (EGR1) expression, leading to cell death via the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) arm of the unfolded protein [...] Read more.
Venezuelan equine encephalitis virus (VEEV) is an alphavirus that causes encephalitis. Previous work indicated that VEEV infection induced early growth response 1 (EGR1) expression, leading to cell death via the protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) arm of the unfolded protein response (UPR) pathway. Loss of PERK prevented EGR1 induction and decreased VEEV-induced death. The results presented within show that loss of PERK in human primary astrocytes dramatically reduced VEEV and eastern equine encephalitis virus (EEEV) infectious titers by 4–5 log10. Loss of PERK also suppressed VEEV replication in primary human pericytes and human umbilical vein endothelial cells, but it had no impact on VEEV replication in transformed U87MG and 293T cells. A significant reduction in VEEV RNA levels was observed as early as 3 h post-infection, but viral entry assays indicated that the loss of PERK minimally impacted VEEV entry. In contrast, the loss of PERK resulted in a dramatic reduction in viral nonstructural protein translation and negative-strand viral RNA production. The loss of PERK also reduced the production of Rift Valley fever virus and Zika virus infectious titers. These data indicate that PERK is an essential factor for the translation of alphavirus nonstructural proteins and impacts multiple RNA viruses, making it an exciting target for antiviral development. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

Back to TopTop