Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (22)

Search Parameters:
Keywords = epithelial-mesenchymal plasticity (EMP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2485 KiB  
Article
Epigenetic Changes Regulating Epithelial–Mesenchymal Plasticity in Human Trophoblast Differentiation
by William E. Ackerman IV, Mauricio M. Rigo, Sonia C. DaSilva-Arnold, Catherine Do, Mariam Tariq, Martha Salas, Angelica Castano, Stacy Zamudio, Benjamin Tycko and Nicholas P. Illsley
Cells 2025, 14(13), 970; https://doi.org/10.3390/cells14130970 - 24 Jun 2025
Viewed by 1118
Abstract
The phenotype of human placental extravillous trophoblast (EVT) at the end of pregnancy reflects both differentiation from villous cytotrophoblast (CTB) and later gestational changes, including loss of proliferative and invasive capacity. Invasion abnormalities are central to major obstetric pathologies, including placenta accreta spectrum, [...] Read more.
The phenotype of human placental extravillous trophoblast (EVT) at the end of pregnancy reflects both differentiation from villous cytotrophoblast (CTB) and later gestational changes, including loss of proliferative and invasive capacity. Invasion abnormalities are central to major obstetric pathologies, including placenta accreta spectrum, early onset preeclampsia, and fetal growth restriction. Characterization of the normal differentiation processes is, thus, essential for the analysis of these pathologies. Our gene expression analysis, employing purified human CTB and EVT cells, demonstrates a mechanism similar to the epithelial–mesenchymal transition (EMT), which underlies CTB–EVT differentiation. In parallel, DNA methylation profiling shows that CTB cells, already hypomethylated relative to non-trophoblast cell lineages, show further genome-wide hypomethylation in the transition to EVT. A small subgroup of genes undergoes gains of methylation (GOM), associated with differential gene expression (DE). Prominent in this GOM-DE group are genes involved in epithelial–mesenchymal plasticity (EMP). An exemplar is the transcription factor RUNX1, for which we demonstrate a functional role in regulating the migratory and invasive capacities of trophoblast cells. This analysis highlights epigenetically regulated genes acting to underpin the epithelial–mesenchymal plasticity characteristic of human trophoblast differentiation. Identification of these elements provides important information for the obstetric disorders in which these processes are dysregulated. Full article
Show Figures

Figure 1

22 pages, 5751 KiB  
Article
Targeting Aggressive Prostate Carcinoma Cells with Mesothelin-CAR-T Cells
by Apolline de Testas de Folmont, Angèle Fauvel, Francis Vacherot, Pascale Soyeux, Abdérémane Abdou, Salem Chouaib and Stéphane Terry
Biomedicines 2025, 13(5), 1215; https://doi.org/10.3390/biomedicines13051215 - 16 May 2025
Viewed by 673
Abstract
Background: Advancing chimeric antigen receptor (CAR) T cell therapy for solid tumors remains a major challenge in cancer immunotherapy. Prostate cancer (PCa), particularly in its aggressive forms, may be a suitable target for CAR-T therapy given the range of associated tumor antigens. [...] Read more.
Background: Advancing chimeric antigen receptor (CAR) T cell therapy for solid tumors remains a major challenge in cancer immunotherapy. Prostate cancer (PCa), particularly in its aggressive forms, may be a suitable target for CAR-T therapy given the range of associated tumor antigens. However, due to the high plasticity and heterogeneity of aggressive PCa and the complexity of the tumor environment, there is a need to broaden the repertoire of targetable antigens and deepen our understanding of CAR-T behavior in stressed microenvironmental conditions. Growing evidence supports mesothelin as a promising cancer-associated marker and a compelling target for CAR-T cell approaches in solid tumors. Objectives and Methods: Here, we employed gene expression datasets to investigate mesothelin expression in both primary and metastatic PCa tumors. Additionally, we evaluated mesothelin expression across various preclinical PCa models and assessed the therapeutic efficacy of second-generation mesothelin-targeted CAR-T (meso-CAR-T) cells under both normoxic and hypoxic conditions, with hypoxia as a representative tumor-associated stress condition. Results: Our results revealed a significant enrichment of mesothelin in 3–10% of metastatic prostate tumors, contrasting with its minimal expression in primary tumors. In line with these findings, we observed increased mesothelin expression in an aggressive variant of the 22Rv1 cell line, which displayed an epithelial–mesenchymal plasticity (EMP) phenotype. Meso-CAR-T cells demonstrated potent cytotoxicity and remarkable selectivity toward these carcinoma cells under both severe hypoxia (1% O2) or normoxia (21% O2), highlighting their ability to withstand metabolic stress within the tumor microenvironment. Conclusions: Our study underscores the potential of meso-CAR-T cells as a promising strategy for targeting specific subtypes of metastatic prostate cancer. Full article
(This article belongs to the Special Issue The Development of Cancer Immunotherapy)
Show Figures

Figure 1

26 pages, 1964 KiB  
Review
Long Non-Coding RNAs: Key Regulators of Tumor Epithelial/Mesenchymal Plasticity and Cancer Stemness
by Yuan Yuan, Yun Tang, Zeng Fang, Jian Wen, Max S. Wicha and Ming Luo
Cells 2025, 14(3), 227; https://doi.org/10.3390/cells14030227 - 5 Feb 2025
Cited by 1 | Viewed by 1722
Abstract
Long non-coding RNAs (lncRNAs) are a class of non-coding RNA molecules with transcripts longer than 200 bp, which were initially thought to be noise from genomic transcription without biological function. However, since the discovery of H19 in 1980 and Xist in 1990, increasing [...] Read more.
Long non-coding RNAs (lncRNAs) are a class of non-coding RNA molecules with transcripts longer than 200 bp, which were initially thought to be noise from genomic transcription without biological function. However, since the discovery of H19 in 1980 and Xist in 1990, increasing evidence has shown that lncRNAs regulate gene expression at epigenetic, transcriptional, and post-transcriptional levels through specific regulatory actions and are involved in the development of cancer and other diseases. Despite many lncRNAs being expressed at lower levels than those of protein-coding genes with less sequence conservation across species, lncRNAs have become an intense area of RNA research. They exert diverse biological functions such as inducing chromatin remodeling, recruiting transcriptional machinery, acting as competitive endogenous RNAs for microRNAs, and modulating protein–protein interactions. Epithelial–mesenchymal transition (EMT) is a developmental process, associated with embryonic development, wound healing, and cancer progression. In the context of oncogenesis, the EMT program is transiently activated and confers migratory/invasive and cancer stem cell (CSC) properties to tumor cells, which are crucial for malignant progression, metastasis, and therapeutic resistance. Accumulating evidence has revealed that lncRNAs play crucial roles in the regulation of tumor epithelial/mesenchymal plasticity (EMP) and cancer stemness. Here, we summarize the emerging roles and molecular mechanisms of lncRNAs in regulating tumor cell EMP and their effects on tumor initiation and progression through regulation of CSCs. We also discuss the potential of lncRNAs as diagnostic and prognostic biomarkers and therapeutic targets. Full article
(This article belongs to the Collection Targeting Cancer Stem Cell)
Show Figures

Figure 1

22 pages, 3450 KiB  
Article
Characterization of Epithelial–Mesenchymal and Neuroendocrine Differentiation States in Pancreatic and Small Cell Ovarian Tumor Cells and Their Modulation by TGF-β1 and BMP-7
by Hendrik Ungefroren, Juliane von der Ohe, Rüdiger Braun, Yola Gätje, Olha Lapshyna, Jörg Schrader, Hendrik Lehnert, Jens-Uwe Marquardt, Björn Konukiewitz and Ralf Hass
Cells 2024, 13(23), 2010; https://doi.org/10.3390/cells13232010 - 5 Dec 2024
Cited by 1 | Viewed by 1814
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis, due in part to early invasion and metastasis, which in turn involves epithelial–mesenchymal transition (EMT) of the cancer cells. Prompted by the discovery that two PDAC cell lines of the quasi-mesenchymal subtype (PANC-1, MIA [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) has an extremely poor prognosis, due in part to early invasion and metastasis, which in turn involves epithelial–mesenchymal transition (EMT) of the cancer cells. Prompted by the discovery that two PDAC cell lines of the quasi-mesenchymal subtype (PANC-1, MIA PaCa-2) exhibit neuroendocrine differentiation (NED), we asked whether NED is associated with EMT. Using real-time PCR and immunoblotting, we initially verified endogenous expressions of various NED markers, i.e., chromogranin A (CHGA), synaptophysin (SYP), somatostatin receptor 2 (SSTR2), and SSTR5 in PANC-1 and MIA PaCa-2 cells. By means of immunohistochemistry, the expressions of CHGA, SYP, SSTR2, and the EMT markers cytokeratin 7 (CK7) and vimentin could be allocated to the neoplastic ductal epithelial cells of pancreatic ducts in surgically resected tissues from patients with PDAC. In HPDE6c7 normal pancreatic duct epithelial cells and in epithelial subtype BxPC-3 PDAC cells, the expression of CHGA, SYP, and neuron-specific enolase 2 (NSE) was either undetectable or much lower than in PANC-1 and MIA PaCa-2 cells. Parental cultures of PANC-1 cells exhibit EM plasticity (EMP) and harbor clonal subpopulations with both M- and E-phenotypes. Of note, M-type clones were found to display more pronounced NED than E-type clones. Inducing EMT in parental cultures of PANC-1 cells by treatment with transforming growth factor-β1 (TGF-β1) repressed epithelial genes and co-induced mesenchymal and NED genes, except for SSTR5. Surprisingly, treatment with bone morphogenetic protein (BMP)-7 differentially affected gene expressions in PANC-1, MIA PaCa-2, BxPC-3, and HPDE cells. It synergized with TGF-β1 in the induction of vimentin, SNAIL, SSTR2, and NSE but antagonized it in the regulation of CHGA and SSTR5. Phospho-immunoblotting in M- and E-type PANC-1 clones revealed that both TGF-β1 and, surprisingly, also BMP-7 activated SMAD2 and SMAD3 and that in M- but not E-type clones BMP-7 was able to dramatically enhance the activation of SMAD3. From these data, we conclude that in EMT of PDAC cells mesenchymal and NED markers are co-regulated, and that mesenchymal–epithelial transition (MET) is associated with a loss of both the mesenchymal and NED phenotypes. Analyzing NED in another tumor type, small cell carcinoma of the ovary hypercalcemic type (SCCOHT), revealed that two model cell lines of this disease (SCCOHT-1, BIN-67) do express CDH1, SNAI1, VIM, CHGA, SYP, ENO2, and SSTR2, but that in contrast to BMP-7, none of these genes was transcriptionally regulated by TGF-β1. Likewise, in BIN-67 cells, BMP-7 was able to reduce proliferation, while in SCCOHT-1 cells this occurred only upon combined treatment with TGF-β and BMP-7. We conclude that in PDAC-derived tumor cells, NED is closely linked to EMT and TGF-β signaling, which may have implications for the therapeutic use of TGF-β inhibitors in PDAC management. Full article
(This article belongs to the Special Issue New Insights of TGF-Beta Signaling in Cancer)
Show Figures

Figure 1

26 pages, 1126 KiB  
Review
Epigenetic Regulation of EMP/EMT-Dependent Fibrosis
by Margherita Sisto and Sabrina Lisi
Int. J. Mol. Sci. 2024, 25(5), 2775; https://doi.org/10.3390/ijms25052775 - 28 Feb 2024
Cited by 5 | Viewed by 2432
Abstract
Fibrosis represents a process characterized by excessive deposition of extracellular matrix (ECM) proteins. It often represents the evolution of pathological conditions, causes organ failure, and can, in extreme cases, compromise the functionality of organs to the point of causing death. In recent years, [...] Read more.
Fibrosis represents a process characterized by excessive deposition of extracellular matrix (ECM) proteins. It often represents the evolution of pathological conditions, causes organ failure, and can, in extreme cases, compromise the functionality of organs to the point of causing death. In recent years, considerable efforts have been made to understand the molecular mechanisms underlying fibrotic evolution and to identify possible therapeutic strategies. Great interest has been aroused by the discovery of a molecular association between epithelial to mesenchymal plasticity (EMP), in particular epithelial to mesenchymal transition (EMT), and fibrogenesis, which has led to the identification of complex molecular mechanisms closely interconnected with each other, which could explain EMT-dependent fibrosis. However, the result remains unsatisfactory from a therapeutic point of view. In recent years, advances in epigenetics, based on chromatin remodeling through various histone modifications or through the intervention of non-coding RNAs (ncRNAs), have provided more information on the fibrotic process, and this could represent a promising path forward for the identification of innovative therapeutic strategies for organ fibrosis. In this review, we summarize current research on epigenetic mechanisms involved in organ fibrosis, with a focus on epigenetic regulation of EMP/EMT-dependent fibrosis. Full article
Show Figures

Figure 1

21 pages, 1590 KiB  
Review
Role of Epithelial to Mesenchymal Transition in Colorectal Cancer
by Jian Lu, Marko Kornmann and Benno Traub
Int. J. Mol. Sci. 2023, 24(19), 14815; https://doi.org/10.3390/ijms241914815 - 1 Oct 2023
Cited by 65 | Viewed by 6557
Abstract
The epithelial–mesenchymal transition (EMT) is a cellular reprogramming process that occurs during embryonic development and adult tissue homeostasis. This process involves epithelial cells acquiring a mesenchymal phenotype. Through EMT, cancer cells acquire properties associated with a more aggressive phenotype. EMT and its opposite, [...] Read more.
The epithelial–mesenchymal transition (EMT) is a cellular reprogramming process that occurs during embryonic development and adult tissue homeostasis. This process involves epithelial cells acquiring a mesenchymal phenotype. Through EMT, cancer cells acquire properties associated with a more aggressive phenotype. EMT and its opposite, mesenchymal–epithelial transition (MET), have been described in more tumors over the past ten years, including colorectal cancer (CRC). When EMT is activated, the expression of the epithelial marker E-cadherin is decreased and the expression of the mesenchymal marker vimentin is raised. As a result, cells temporarily take on a mesenchymal phenotype, becoming motile and promoting the spread of tumor cells. Epithelial–mesenchymal plasticity (EMP) has become a hot issue in CRC because strong inducers of EMT (such as transforming growth factor β, TGF-β) can initiate EMT and regulate metastasis, microenvironment, and immune system resistance in CRC. In this review, we take into account the significance of EMT-MET in CRC and the impact of the epithelial cells’ plasticity on the prognosis of CRC. The analysis of connection between EMT and colorectal cancer stem cells (CCSCs) will help to further clarify the current meager understandings of EMT. Recent advances affecting important EMT transcription factors and EMT and CCSCs are highlighted. We come to the conclusion that the regulatory network for EMT in CRC is complicated, with a great deal of crosstalk and alternate paths. More thorough research is required to more effectively connect the clinical management of CRC with biomarkers and targeted treatments associated with EMT. Full article
(This article belongs to the Special Issue Tumor Microenvironment in Colorectal Cancer (Volume 2))
Show Figures

Figure 1

22 pages, 3468 KiB  
Article
The Quasimesenchymal Pancreatic Ductal Epithelial Cell Line PANC-1—A Useful Model to Study Clonal Heterogeneity and EMT Subtype Shifting
by Hendrik Ungefroren, Isabel Thürling, Benedikt Färber, Tanja Kowalke, Tanja Fischer, Leonardo Vinícius Monteiro De Assis, Rüdiger Braun, Darko Castven, Henrik Oster, Björn Konukiewitz, Ulrich Friedrich Wellner, Hendrik Lehnert and Jens-Uwe Marquardt
Cancers 2022, 14(9), 2057; https://doi.org/10.3390/cancers14092057 - 19 Apr 2022
Cited by 18 | Viewed by 4782
Abstract
Intratumoral heterogeneity (ITH) is an intrinsic feature of malignant tumors that eventually allows a subfraction of resistant cancer cells to clonally evolve and cause therapy failure or relapse. ITH, cellular plasticity and tumor progression are driven by epithelial–mesenchymal transition (EMT) and the reverse [...] Read more.
Intratumoral heterogeneity (ITH) is an intrinsic feature of malignant tumors that eventually allows a subfraction of resistant cancer cells to clonally evolve and cause therapy failure or relapse. ITH, cellular plasticity and tumor progression are driven by epithelial–mesenchymal transition (EMT) and the reverse process, MET. During these developmental programs, epithelial (E) cells are successively converted to invasive mesenchymal (M) cells, or back to E cells, by passing through a series of intermediate E/M states, a phenomenon termed E–M plasticity (EMP). The induction of MET has clinical potential as it can block the initial EMT stages that favor tumor cell dissemination, while its inhibition can curb metastatic outgrowth at distant sites. In pancreatic ductal adenocarcinoma (PDAC), cellular models with which to study EMP or MET induction are scarce. Here, we have generated single cell-derived clonal cultures of the quasimesenchymal PDAC-derived cell line, PANC-1, and found that these differ strongly with respect to cell morphology and EMT marker expression, allowing for their tentative classification as E, E/M or M. Interestingly, the different EMT phenotypes were found to segregate with differences in tumorigenic potential in vitro, as measured by colony forming and invasive activities, and in circadian clock function. Moreover, the individual clones the phenotypes of which remained stable upon prolonged culture also responded differently to treatment with transforming growth factor (TGF)β1 in regard to regulation of growth and individual TGFβ target genes, and to culture conditions that favour ductal-to-endocrine transdifferentiation as a more direct measure for cellular plasticity. Of note, stimulation with TGFβ1 induced a shift in parental PANC-1 cultures towards a more extreme M and invasive phenotype, while exposing the cells to a combination of the proinflammatory cytokines IFNγ, IL1β and TNFα (IIT) elicited a shift towards a more E and less invasive phenotype resembling a MET-like process. Finally, we show that the actions of TGFβ1 and IIT both converge on regulating the ratio of the small GTPase RAC1 and its splice isoform, RAC1b. Our data provide strong evidence for dynamic EMT–MET transitions and qualify this cell line as a useful model with which to study EMP. Full article
Show Figures

Figure 1

20 pages, 17547 KiB  
Review
The Role of SMAD4 Inactivation in Epithelial–Mesenchymal Plasticity of Pancreatic Ductal Adenocarcinoma: The Missing Link?
by Marie-Lucie Racu, Laetitia Lebrun, Andrea Alex Schiavo, Claude Van Campenhout, Sarah De Clercq, Lara Absil, Esmeralda Minguijon Perez, Calliope Maris, Christine Decaestecker, Isabelle Salmon and Nicky D’Haene
Cancers 2022, 14(4), 973; https://doi.org/10.3390/cancers14040973 - 15 Feb 2022
Cited by 20 | Viewed by 6022
Abstract
Pancreatic ductal adenocarcinoma (PDAC) presents a five-year survival rate of 10% and its incidence increases over the years. It is, therefore, essential to improve our understanding of the molecular mechanisms that promote metastasis and chemoresistance in PDAC, which are the main causes of [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) presents a five-year survival rate of 10% and its incidence increases over the years. It is, therefore, essential to improve our understanding of the molecular mechanisms that promote metastasis and chemoresistance in PDAC, which are the main causes of death in these patients. SMAD4 is inactivated in 50% of PDACs and its loss has been associated with worse overall survival and metastasis, although some controversy still exists. SMAD4 is the central signal transducer of the transforming growth factor-beta (TGF-beta) pathway, which is notably known to play a role in epithelial–mesenchymal transition (EMT). EMT is a biological process where epithelial cells lose their characteristics to acquire a spindle-cell phenotype and increased motility. EMT has been increasingly studied due to its potential implication in metastasis and therapy resistance. Recently, it has been suggested that cells undergo EMT transition through intermediary states, which is referred to as epithelial–mesenchymal plasticity (EMP). The intermediary states are characterized by enhanced aggressiveness and more efficient metastasis. Therefore, this review aims to summarize and analyze the current knowledge on SMAD4 loss in patients with PDAC and to investigate its potential role in EMP in order to better understand its function in PDAC carcinogenesis. Full article
(This article belongs to the Collection Cancer Biomarkers)
Show Figures

Figure 1

21 pages, 4433 KiB  
Article
Transcriptomic-Based Quantification of the Epithelial-Hybrid-Mesenchymal Spectrum across Biological Contexts
by Susmita Mandal, Tanishq Tejaswi, Rohini Janivara, Syamanthak Srikrishnan, Pradipti Thakur, Sarthak Sahoo, Priyanka Chakraborty, Sukhwinder Singh Sohal, Herbert Levine, Jason T. George and Mohit Kumar Jolly
Biomolecules 2022, 12(1), 29; https://doi.org/10.3390/biom12010029 - 25 Dec 2021
Cited by 10 | Viewed by 6820
Abstract
Epithelial-mesenchymal plasticity (EMP) underlies embryonic development, wound healing, and cancer metastasis and fibrosis. Cancer cells exhibiting EMP often have more aggressive behavior, characterized by drug resistance, and tumor-initiating and immuno-evasive traits. Thus, the EMP status of cancer cells can be a critical indicator [...] Read more.
Epithelial-mesenchymal plasticity (EMP) underlies embryonic development, wound healing, and cancer metastasis and fibrosis. Cancer cells exhibiting EMP often have more aggressive behavior, characterized by drug resistance, and tumor-initiating and immuno-evasive traits. Thus, the EMP status of cancer cells can be a critical indicator of patient prognosis. Here, we compare three distinct transcriptomic-based metrics—each derived using a different gene list and algorithm—that quantify the EMP spectrum. Our results for over 80 cancer-related RNA-seq datasets reveal a high degree of concordance among these metrics in quantifying the extent of EMP. Moreover, each metric, despite being trained on cancer expression profiles, recapitulates the expected changes in EMP scores for non-cancer contexts such as lung fibrosis and cellular reprogramming into induced pluripotent stem cells. Thus, we offer a scoring platform to quantify the extent of EMP in vitro and in vivo for diverse biological applications including cancer. Full article
(This article belongs to the Special Issue New Insights on the Regulation of the Cell Plasticity)
Show Figures

Figure 1

15 pages, 3238 KiB  
Article
Epithelial-to-Mesenchymal Plasticity in Circulating Tumor Cell Lines Sequentially Derived from a Patient with Colorectal Cancer
by Pelin Balcik-Ercin, Laure Cayrefourcq, Rama Soundararajan, Sendurai A. Mani and Catherine Alix-Panabières
Cancers 2021, 13(21), 5408; https://doi.org/10.3390/cancers13215408 - 28 Oct 2021
Cited by 19 | Viewed by 3325
Abstract
Metastasis is a complicated and only partially understood multi-step process of cancer progression. A subset of cancer cells that can leave the primary tumor, intravasate, and circulate to reach distant organs are called circulating tumor cells (CTCs). Multiple lines of evidence suggest that [...] Read more.
Metastasis is a complicated and only partially understood multi-step process of cancer progression. A subset of cancer cells that can leave the primary tumor, intravasate, and circulate to reach distant organs are called circulating tumor cells (CTCs). Multiple lines of evidence suggest that in metastatic cancer cells, epithelial and mesenchymal markers are co-expressed to facilitate the cells’ ability to go back and forth between cellular states. This feature is called epithelial-to-mesenchymal plasticity (EMP). CTCs represent a unique source to understand the EMP features in metastatic cascade biology. Our group previously established and characterized nine serial CTC lines from a patient with metastatic colon cancer. Here, we assessed the expression of markers involved in epithelial–mesenchymal (EMT) and mesenchymal–epithelial (MET) transition in these unique CTC lines, to define their EMP profile. We found that the oncogenes MYC and ezrin were expressed by all CTC lines, but not SIX1, one of their common regulators (also an EMT inducer). Moreover, the MET activator GRHL2 and its putative targets were strongly expressed in all CTC lines, revealing their plasticity in favor of an increased MET state that promotes metastasis formation. Full article
Show Figures

Figure 1

18 pages, 2428 KiB  
Article
KLF4 Induces Mesenchymal–Epithelial Transition (MET) by Suppressing Multiple EMT-Inducing Transcription Factors
by Ayalur Raghu Subbalakshmi, Sarthak Sahoo, Isabelle McMullen, Aaditya Narayan Saxena, Sudhanva Kalasapura Venugopal, Jason A. Somarelli and Mohit Kumar Jolly
Cancers 2021, 13(20), 5135; https://doi.org/10.3390/cancers13205135 - 13 Oct 2021
Cited by 22 | Viewed by 4868
Abstract
Epithelial–Mesenchymal Plasticity (EMP) refers to reversible dynamic processes where cells can transition from epithelial to mesenchymal (EMT) or from mesenchymal to epithelial (MET) phenotypes. Both these processes are modulated by multiple transcription factors acting in concert. While EMT-inducing transcription factors (TFs)—TWIST1/2, ZEB1/2, SNAIL1/2/3, [...] Read more.
Epithelial–Mesenchymal Plasticity (EMP) refers to reversible dynamic processes where cells can transition from epithelial to mesenchymal (EMT) or from mesenchymal to epithelial (MET) phenotypes. Both these processes are modulated by multiple transcription factors acting in concert. While EMT-inducing transcription factors (TFs)—TWIST1/2, ZEB1/2, SNAIL1/2/3, GSC, and FOXC2—are well-characterized, the MET-inducing TFs are relatively poorly understood (OVOL1/2 and GRHL1/2). Here, using mechanism-based mathematical modeling, we show that transcription factor KLF4 can delay the onset of EMT by suppressing multiple EMT-TFs. Our simulations suggest that KLF4 overexpression can promote a phenotypic shift toward a more epithelial state, an observation suggested by the negative correlation of KLF4 with EMT-TFs and with transcriptomic-based EMT scoring metrics in cancer cell lines. We also show that the influence of KLF4 in modulating the EMT dynamics can be strengthened by its ability to inhibit cell-state transitions at the epigenetic level. Thus, KLF4 can inhibit EMT through multiple parallel paths and can act as a putative MET-TF. KLF4 associates with the patient survival metrics across multiple cancers in a context-specific manner, highlighting the complex association of EMP with patient survival. Full article
Show Figures

Figure 1

21 pages, 841 KiB  
Review
The Role of the IL-6 Cytokine Family in Epithelial–Mesenchymal Plasticity in Cancer Progression
by Andrea Abaurrea, Angela M. Araujo and Maria M. Caffarel
Int. J. Mol. Sci. 2021, 22(15), 8334; https://doi.org/10.3390/ijms22158334 - 3 Aug 2021
Cited by 75 | Viewed by 8292
Abstract
Epithelial–mesenchymal plasticity (EMP) plays critical roles during embryonic development, wound repair, fibrosis, inflammation and cancer. During cancer progression, EMP results in heterogeneous and dynamic populations of cells with mixed epithelial and mesenchymal characteristics, which are required for local invasion and metastatic dissemination. Cancer [...] Read more.
Epithelial–mesenchymal plasticity (EMP) plays critical roles during embryonic development, wound repair, fibrosis, inflammation and cancer. During cancer progression, EMP results in heterogeneous and dynamic populations of cells with mixed epithelial and mesenchymal characteristics, which are required for local invasion and metastatic dissemination. Cancer development is associated with an inflammatory microenvironment characterized by the accumulation of multiple immune cells and pro-inflammatory mediators, such as cytokines and chemokines. Cytokines from the interleukin 6 (IL-6) family play fundamental roles in mediating tumour-promoting inflammation within the tumour microenvironment, and have been associated with chronic inflammation, autoimmunity, infectious diseases and cancer, where some members often act as diagnostic or prognostic biomarkers. All IL-6 family members signal through the Janus kinase (JAK)–signal transducer and activator of transcription (STAT) pathway and are able to activate a wide array of signalling pathways and transcription factors. In general, IL-6 cytokines activate EMP processes, fostering the acquisition of mesenchymal features in cancer cells. However, this effect may be highly context dependent. This review will summarise all the relevant literature related to all members of the IL-6 family and EMP, although it is mainly focused on IL-6 and oncostatin M (OSM), the family members that have been more extensively studied. Full article
(This article belongs to the Special Issue The Epithelial-to-Mesenchymal Transition (EMT) in Cancers)
Show Figures

Figure 1

28 pages, 4743 KiB  
Article
Diversity of Epithelial-Mesenchymal Phenotypes in Circulating Tumour Cells from Prostate Cancer Patient-Derived Xenograft Models
by Sara Hassan, Tony Blick, Erik W. Thompson and Elizabeth D. Williams
Cancers 2021, 13(11), 2750; https://doi.org/10.3390/cancers13112750 - 1 Jun 2021
Cited by 24 | Viewed by 4664
Abstract
Metastasis is the leading cause of cancer-related deaths worldwide. The epithelial-mesenchymal plasticity (EMP) status of primary tumours has relevance to metastatic potential and therapy resistance. Circulating tumour cells (CTCs) provide a window into the metastatic process, and molecular characterisation of CTCs in comparison [...] Read more.
Metastasis is the leading cause of cancer-related deaths worldwide. The epithelial-mesenchymal plasticity (EMP) status of primary tumours has relevance to metastatic potential and therapy resistance. Circulating tumour cells (CTCs) provide a window into the metastatic process, and molecular characterisation of CTCs in comparison to their primary tumours could lead to a better understanding of the mechanisms involved in the metastatic cascade. In this study, paired blood and tumour samples were collected from four prostate cancer patient-derived xenograft (PDX) models (BM18, LuCaP70, LuCaP96, LuCaP105) and assessed using an EMP-focused, 42 gene human-specific, nested quantitative RT-PCR assay. CTC burden varied amongst the various xenograft models with LuCaP96 having the highest number of CTCs per mouse (mean: 704; median: 31) followed by BM18 (mean: 101; median: 21), LuCaP70 (mean: 73; median: 16) and LuCaP105 (mean: 57; median: 6). A significant relationship was observed between tumour size and CTC number (p = 0.0058). Decreased levels of kallikrein-related peptidase 3 (KLK3) mRNA (which encodes prostate-specific antigen; PSA) were observed in CTC samples from all four models compared to their primary tumours. Both epithelial- and mesenchymal-associated genes were commonly expressed at higher levels in CTCs compared to the bulk primary tumour, although some common EMT-associated genes (CDH1, VIM, EGFR, EPCAM) remained unchanged. Immunofluorescence co-staining for pan-cytokeratin (KRT) and vimentin (VIM) indicated variable proportions of CTCs across the full EMP axis, even in the same model. EMP hybrids predominated in the BM18 and LuCaP96 models, but were not detected in the LuCaP105 model, and variable numbers of KRT+ and human VIM+ cells were observed in each model. SERPINE1, which encodes plasminogen activator inhibitor-1 (PAI-1), was enriched at the RNA level in CTCs compared to primary tumours and was the most commonly expressed mesenchymal gene in the CTCs. Co-staining for SERPINE1 and KRT revealed SERPINE1+ cells in 7/11 samples, six of which had SERPINE+KRT+ CTCs. Cell size variation was observed in CTCs. The majority of samples (8/11) contained larger CTCs ranging from 15.3 to 37.8 µm, whilst smaller cells (10.7 ± 4.1 µm, similar in size to peripheral blood mononuclear cells (PBMCs)) were identified in 6 of 11 samples. CTC clusters were also identified in 9/11 samples, containing 2–100 CTCs per cluster. Where CTC heterogeneity was observed in the clusters, epithelial-like cells (KRT+VIM) were located on the periphery of the cluster, forming a layer around hybrid (KRT+VIM+) or mesenchymal-like (KRTVIM+) cells. The CTC heterogeneity observed in these models emphasises the complexity in CTC isolation and classification and supports the increasingly recognised importance of the epithelial-mesenchymal hybrid state in cancer progression and metastasis. Full article
(This article belongs to the Special Issue Liquid Biopsy: Latest Advances and Future Challenges)
Show Figures

Figure 1

19 pages, 4803 KiB  
Article
Human Primary Breast Cancer Stem Cells Are Characterized by Epithelial-Mesenchymal Plasticity
by Juliane Strietz, Stella S. Stepputtis, Marie Follo, Peter Bronsert, Elmar Stickeler and Jochen Maurer
Int. J. Mol. Sci. 2021, 22(4), 1808; https://doi.org/10.3390/ijms22041808 - 11 Feb 2021
Cited by 24 | Viewed by 4025
Abstract
Triple-negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer, with only limited treatment options available. Recently, cancer stem cells (CSCs) have emerged as the potential drivers of tumor progression due to their ability to both self-renew and give [...] Read more.
Triple-negative breast cancer (TNBC) is one of the most aggressive subtypes of breast cancer, with only limited treatment options available. Recently, cancer stem cells (CSCs) have emerged as the potential drivers of tumor progression due to their ability to both self-renew and give rise to differentiated progeny. The CSC state has been linked to the process of epithelial-mesenchymal transition (EMT) and to the highly flexible state of epithelial-mesenchymal plasticity (EMP). We aimed to establish primary breast cancer stem cell (BCSC) cultures isolated from TNBC specimens. These cells grow as tumor spheres under anchorage-independent culture conditions in vitro and reliably form tumors in mice when transplanted in limiting dilutions in vivo. The BCSC xenograft tumors phenocopy the original patient tumor in architecture and gene expression. Analysis of an EMT-related marker profile revealed the concomitant expression of epithelial and mesenchymal markers suggesting an EMP state for BCSCs of TNBC. Furthermore, BCSCs were susceptible to stimulation with the EMT inducer TGF-β1, resulting in upregulation of mesenchymal genes and enhanced migratory abilities. Overall, primary BCSC cultures are a promising model close to the patient that can be used both in vitro and in vivo to address questions of BCSC biology and evaluate new treatment options for TNBC. Full article
Show Figures

Figure 1

23 pages, 1868 KiB  
Review
Role of Epithelial–Mesenchymal Plasticity in Pseudomyxoma Peritonei: Implications for Locoregional Treatments
by Maria Luisa Calabrò, Nayana Lazzari, Giulia Rigotto, Marco Tonello and Antonio Sommariva
Int. J. Mol. Sci. 2020, 21(23), 9120; https://doi.org/10.3390/ijms21239120 - 30 Nov 2020
Cited by 9 | Viewed by 7181
Abstract
The mechanisms by which neoplastic cells disseminate from the primary tumor to metastatic sites, so-called metastatic organotropism, remain poorly understood. Epithelial–mesenchymal transition (EMT) plays a role in cancer development and progression by converting static epithelial cells into the migratory and microenvironment-interacting mesenchymal cells, [...] Read more.
The mechanisms by which neoplastic cells disseminate from the primary tumor to metastatic sites, so-called metastatic organotropism, remain poorly understood. Epithelial–mesenchymal transition (EMT) plays a role in cancer development and progression by converting static epithelial cells into the migratory and microenvironment-interacting mesenchymal cells, and by the modulation of chemoresistance and stemness of tumor cells. Several findings highlight that pathways involved in EMT and its reverse process (mesenchymal–epithelial transition, MET), now collectively called epithelial–mesenchymal plasticity (EMP), play a role in peritoneal metastases. So far, the relevance of factors linked to EMP in a unique peritoneal malignancy such as pseudomyxoma peritonei (PMP) has not been fully elucidated. In this review, we focus on the role of epithelial–mesenchymal dynamics in the metastatic process involving mucinous neoplastic dissemination in the peritoneum. In particular, we discuss the role of expression profiles and phenotypic transitions found in PMP in light of the recent concept of EMP. A better understanding of EMP-associated mechanisms driving peritoneal metastasis will help to provide a more targeted approach for PMP patients selected for locoregional interventions involving cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Full article
Show Figures

Figure 1

Back to TopTop