Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = epimedin C

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6562 KiB  
Article
The Mechanism Underlying the Hypoglycemic Effect of Epimedin C on Mice with Type 2 Diabetes Mellitus Based on Proteomic Analysis
by Xuexue Zhou, Ziqi Liu, Xiaohua Yang, Jing Feng, Murat Sabirovich Gins, Tingyu Yan, Lei Han and Huafeng Zhang
Nutrients 2024, 16(1), 25; https://doi.org/10.3390/nu16010025 - 21 Dec 2023
Cited by 5 | Viewed by 2338
Abstract
Type 2 diabetes mellitus (T2DM) has become a worldwide public health problem. Epimedin C is considered one of the most important flavonoids in Epimedium, a famous edible herb in China and Southeast Asia that is traditionally used in herbal medicine to treat [...] Read more.
Type 2 diabetes mellitus (T2DM) has become a worldwide public health problem. Epimedin C is considered one of the most important flavonoids in Epimedium, a famous edible herb in China and Southeast Asia that is traditionally used in herbal medicine to treat diabetes. In the present study, the therapeutic potential of epimedin C against T2DM was ascertained using a mouse model, and the mechanism underlying the hypoglycemic activity of epimedin C was explored using a label-free proteomic technique for the first time. Levels of fasting blood glucose (FBG), homeostasis model assessment of insulin resistance (HOMA-IR), and oral glucose tolerance, as well as contents of malondialdehyde (MDA) and low-density lipoprotein cholesterol (LDL-C) in the 30 mg·kg−1 epimedin C group (EC30 group), were significantly lower than those in the model control group (MC group) (p < 0.05), while the contents of hepatic glycogen, insulin, and high-density lipoprotein cholesterol (HDL-C), as well as activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the EC30 group were notably higher than those in the MC group (p < 0.05). The structures of liver cells and tissues were greatly destroyed in the MC group, whereas the structures of cells and tissues were basically complete in the EC30 group, which were similar to those in the normal control group (NC group). A total of 92 differentially expressed proteins (DEPs) were enriched in the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. In the EC30 vs. MC groups, the expression level of cytosolic phosphoenolpyruvate carboxykinase (Pck1) was down-regulated, while the expression levels of group XIIB secretory phospholipase A2-like protein (Pla2g12b), apolipoprotein B-100 (Apob), and cytochrome P450 4A14 (Cyp4a14) were up-regulated. According to the KEGG pathway assay, Pck1 participated in the gluconeogenesis and insulin signaling pathways, and Pla2g12b, Apob, and Cyp4a14 were the key proteins in the fat digestion and fatty acid degradation pathways. Pck1, Pla2g12b, Apob, and Cyp4a14 seemed to play important roles in the prevention and treatment of T2DM. In summary, epimedin C inhibited Pck1 expression to maintain FBG at a relatively stable level, promoted Pla2g12b, Apob, and Cyp4a14 expressions to alleviate liver lipotoxicity, and protected liver tissues and cells from oxidant stress possibly by its phenolic hydroxyl groups. Full article
(This article belongs to the Special Issue Effects of Phytochemicals on Metabolic Disorders and Human Health)
Show Figures

Figure 1

20 pages, 3985 KiB  
Review
Advancements in the Biotransformation and Biosynthesis of the Primary Active Flavonoids Derived from Epimedium
by Xiaoling Zhang, Bingling Tang, Sijie Wen, Yitong Wang, Chengxue Pan, Lingbo Qu, Yulong Yin and Yongjun Wei
Molecules 2023, 28(20), 7173; https://doi.org/10.3390/molecules28207173 - 19 Oct 2023
Cited by 37 | Viewed by 4656
Abstract
Epimedium is a classical Chinese herbal medicine, which has been used extensively to treat various diseases, such as sexual dysfunction, osteoporosis, cancer, rheumatoid arthritis, and brain diseases. Flavonoids, such as icariin, baohuoside I, icaritin, and epimedin C, are the main active ingredients with [...] Read more.
Epimedium is a classical Chinese herbal medicine, which has been used extensively to treat various diseases, such as sexual dysfunction, osteoporosis, cancer, rheumatoid arthritis, and brain diseases. Flavonoids, such as icariin, baohuoside I, icaritin, and epimedin C, are the main active ingredients with diverse pharmacological activities. Currently, most Epimedium flavonoids are extracted from Epimedium plants, but this method cannot meet the increasing market demand. Biotransformation strategies promised huge potential for increasing the contents of high-value Epimedium flavonoids, which would promote the full use of the Epimedium herb. Complete biosynthesis of major Epimedium flavonoids by microbial cell factories would enable industrial-scale production of Epimedium flavonoids. This review summarizes the structures, pharmacological activities, and biosynthesis pathways in the Epimedium plant, as well as the extraction methods of major Epimedium flavonoids, and advancements in the biotransformation and complete microbial synthesis of Epimedium flavonoids, which would provide valuable insights for future studies on Epimedium herb usage and the production of Epimedium flavonoids. Full article
Show Figures

Figure 1

18 pages, 3835 KiB  
Article
The Effect of Epimedium Isopentenyl Flavonoids on the Broiler Gut Health Using Microbiomic and Metabolomic Analyses
by Jiaqi Zhang, Qingyu Zhao, Yuchang Qin, Wei Si, Huiyan Zhang and Junmin Zhang
Int. J. Mol. Sci. 2023, 24(8), 7646; https://doi.org/10.3390/ijms24087646 - 21 Apr 2023
Cited by 10 | Viewed by 2914
Abstract
Epimedium (EM), also known as barrenwort, is a traditional medicinal plant rich in isopentenyl flavonols, which have beneficial biological activities and can improve human and animal health, but its mechanism is still unclear. In this study, ultra-high-performance liquid chromatography/quadrupole-time-of-flight-mass spectrometry (UHPLC-Q-TOF/MS) and ultra-high-performance [...] Read more.
Epimedium (EM), also known as barrenwort, is a traditional medicinal plant rich in isopentenyl flavonols, which have beneficial biological activities and can improve human and animal health, but its mechanism is still unclear. In this study, ultra-high-performance liquid chromatography/quadrupole-time-of-flight-mass spectrometry (UHPLC-Q-TOF/MS) and ultra-high-performance liquid chromatography triple-quadrupole mass spectrometry (UHPLC-QqQ-MS/MS) were used to analyse the main components of EM, and isopentenyl flavonols such as Epimedin A, B, and C as well as Icariin were the major components of EM. Meanwhile, broilers were selected as model animals to illuminate the mechanism of Epimedium isopentenyl flavonols (EMIE) on gut health. The results showed that supplementation with 200 mg/kg EM improved the immune response, increased cecum short-chain fatty acids (SCFAs) and lactate concentrations, and improved nutrient digestibility in broilers. In addition, 16S rRNA sequencing showed that EMIE altered the composition of cecal microbiome, increasing the relative abundance of beneficial bacteria (Candidatus Soleaferrea and Lachbospiraceae NC2004 group and Butyricioccus) and reducing that of harmful bacteria (UBA1819, Negativibacillus, and Eisenbergiella). Metabolomic analysis identified 48 differential metabolites, of which Erosnin and Tyrosyl-Tryptophan were identified as core biomarkers. Erosnin and tyrosyl-tryptophan are potential biomarkers to evaluate the effects of EMIE. This shows that EMIE may regulate the cecum microbiota through Butyricicoccus, with changes in the relative abundance of the genera Eisenbergiella and Un. Peptostreptococcaceae affecting the serum metabolite levels of the host. EMIE is an excellent health product, and dietary isopentenyl flavonols, as bioactive components, can improve health by altering the microbiota structure and the plasma metabolite profiles. This study provides the scientific basis for the future application of EM in diets. Full article
Show Figures

Graphical abstract

19 pages, 15482 KiB  
Article
A Comprehensive Analysis to Elucidate the Effects of Spraying Mineral Elements on the Accumulation of Flavonoids in Epimedium sagittatum during the Harvesting Period
by Linlin Yang, Fei Zhang, Yueci Yan, Xupeng Gu, Shengwei Zhou, Xiuhong Su, Baoyu Ji, Hua Zhong and Chengming Dong
Metabolites 2023, 13(2), 294; https://doi.org/10.3390/metabo13020294 - 16 Feb 2023
Cited by 1 | Viewed by 2275
Abstract
The harvesting period is a critical period for the accumulation of flavonoids in the leaves of the important medicinal plant Epimedium sagittatum. In this study, we conducted an experiment on E. sagittatum leaves sprayed with mineral elements with the aim of improving [...] Read more.
The harvesting period is a critical period for the accumulation of flavonoids in the leaves of the important medicinal plant Epimedium sagittatum. In this study, we conducted an experiment on E. sagittatum leaves sprayed with mineral elements with the aim of improving the quality of the herbal leafage during the harvesting period. We elucidated the changes in flavonoids (icariin, epimedin A, epimedin B, and epimedin C) in E. sagittatum leaves. The sum of main flavonoids content reached a maximum (11.74%) at 20 days after the high-concentration Fe2+ (2500 mg·L−1) treatment. We analyzed the FT-IR spectra characteristics of E. sagittatum leaf samples using the FT-IR technique, and constructed an OPLS-DA model and identified characteristic peaks to achieve differentiated identification of E. sagittatum. Further, widely untargeted metabolomic analysis identified different classes of metabolites. As the most important characteristic flavonoids, the relative contents of icariin, icaritin, icariside I, and icariside II were found to be up-regulated by high-Fe2+ treatment. Our experimental results demonstrate that high-concentration Fe2+ treatment is an effective measure to increase the flavonoids content in E. sagittatum leaves during the harvesting period, which can provide a scientific basis for the improvement of E. sagittatum leaf cultivation agronomic measures. Full article
(This article belongs to the Special Issue Secondary Metabolites from Plant Sources)
Show Figures

Graphical abstract

17 pages, 3106 KiB  
Article
Purification and Characterization of a Novel α-L-Rhamnosidase from Papiliotrema laurentii ZJU-L07 and Its Application in Production of Icariin from Epimedin C
by Hanghang Lou, Xiayu Liu, Siyu Liu and Qihe Chen
J. Fungi 2022, 8(6), 644; https://doi.org/10.3390/jof8060644 - 20 Jun 2022
Cited by 8 | Viewed by 2603
Abstract
Icariin is the most effective bioactive compound in Herba Epimedii. To enhance the content of icariin in the epimedium water extract, a novel strain, Papiliotrema laurentii ZJU-L07, producing an intracellular α-L-rhamnosidase was isolated from the soil and mutagenized. The specific activity of α-L-rhamnosidase [...] Read more.
Icariin is the most effective bioactive compound in Herba Epimedii. To enhance the content of icariin in the epimedium water extract, a novel strain, Papiliotrema laurentii ZJU-L07, producing an intracellular α-L-rhamnosidase was isolated from the soil and mutagenized. The specific activity of α-L-rhamnosidase was 29.89 U·mg−1 through purification, and the molecular mass of the enzyme was 100 kDa, as assayed by SDS-PAGE. The characterization of the purified enzyme was determined. The optimal temperature and pH were 55 °C and 7.0, respectively. The enzyme was stable in the pH range 5.5–9.0 for 2 h over 80% and the temperature range 30–40 °C for 2 h more than 70%. The enzyme activity was inhibited by Ca2+, Fe2+, Cu2+, and Mg2+, especially Fe2+. The kinetic parameters of Km and Vmax were 1.38 mM and 24.64 μmol·mg−1·min−1 using pNPR as the substrate, respectively. When epimedin C was used as a nature substrate to determine the kinetic parameters of α-L-rhamnosidase, the values of Km and Vmax were 3.28 mM and 0.01 μmol·mg−1·min−1, respectively. The conditions of enzymatic hydrolysis were optimized through single factor experiments and response surface methodology. The icariin yield increased from 61% to over 83% after optimization. The enzymatic hydrolysis method could be used for the industrialized production of icariin. At the same time, this enzyme could also cleave the α-1,2 glycosidic linkage between glucoside and rhamnoside in naringin and neohesperidin, which could be applicable in other biotechnological processes. Full article
(This article belongs to the Special Issue Discovery and Biosynthesis of Fungal Natural Products)
Show Figures

Graphical abstract

28 pages, 9111 KiB  
Article
Anti-Inflammatory and Chondroprotective Effects of Vanillic Acid and Epimedin C in Human Osteoarthritic Chondrocytes
by Reihane Ziadlou, Andrea Barbero, Ivan Martin, Xinluan Wang, Ling Qin, Mauro Alini and Sibylle Grad
Biomolecules 2020, 10(6), 932; https://doi.org/10.3390/biom10060932 - 19 Jun 2020
Cited by 56 | Viewed by 5203
Abstract
In osteoarthritis (OA), inhibition of excessively expressed pro-inflammatory cytokines in the OA joint and increasing the anabolism for cartilage regeneration are necessary. In this ex-vivo study, we used an inflammatory model of human OA chondrocytes microtissues, consisting of treatment with cytokines (interleukin 1β [...] Read more.
In osteoarthritis (OA), inhibition of excessively expressed pro-inflammatory cytokines in the OA joint and increasing the anabolism for cartilage regeneration are necessary. In this ex-vivo study, we used an inflammatory model of human OA chondrocytes microtissues, consisting of treatment with cytokines (interleukin 1β (IL-1β)/tumor necrosis factor α (TNF-α)) with or without supplementation of six herbal compounds with previously identified chondroprotective effect. The compounds were assessed for their capacity to modulate the key catabolic and anabolic factors using several molecular analyses. We selectively investigated the mechanism of action of the two most potent compounds Vanillic acid (VA) and Epimedin C (Epi C). After identification of the anti-inflammatory and anabolic properties of VA and Epi C, the Ingenuity Pathway Analysis showed that in both treatment groups, osteoarthritic signaling pathways were inhibited. In the treatment group with VA, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling was inhibited by attenuation of the nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha (IκBα) phosphorylation. Epi C showed a significant anabolic effect by increasing the expression of collagenous and non-collagenous matrix proteins. In conclusion, VA, through inhibition of phosphorylation in NF-κB signaling pathway and Epi C, by increasing the expression of extracellular matrix components, showed significant anti-inflammatory and anabolic properties and might be potentially used in combination to treat or prevent joint OA. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

18 pages, 2161 KiB  
Article
Regulation of Inflammatory Response in Human Osteoarthritic Chondrocytes by Novel Herbal Small Molecules
by Reihane Ziadlou, Andrea Barbero, Martin J. Stoddart, Michael Wirth, Zhen Li, Ivan Martin, Xin-luan Wang, Ling Qin, Mauro Alini and Sibylle Grad
Int. J. Mol. Sci. 2019, 20(22), 5745; https://doi.org/10.3390/ijms20225745 - 15 Nov 2019
Cited by 24 | Viewed by 4566
Abstract
In this study, 34 Traditional Chinese Medicine (TCM) compounds were screened for potential anabolic and anti-inflammatory properties on human osteoarthritic (OA) chondrocytes. The anabolic effects were assessed by measuring the glycosaminoglycan (GAG) relative to the DNA content using a 3D pellet culture model. [...] Read more.
In this study, 34 Traditional Chinese Medicine (TCM) compounds were screened for potential anabolic and anti-inflammatory properties on human osteoarthritic (OA) chondrocytes. The anabolic effects were assessed by measuring the glycosaminoglycan (GAG) relative to the DNA content using a 3D pellet culture model. The most chondrogenic compounds were tested in an inflammatory model consisting of 3 days of treatment with cytokines (IL-1β/TNF-α) with or without supplementation of TCM compounds. The anti-inflammatory effects were assessed transcriptionally, biochemically and histologically. From the 34 compounds, Vanilic acid (VA), Epimedin A (Epi A) and C (Epi C), 2′′-O-rhamnosylicariside II (2-O-rhs II), Icariin, Psoralidin (PS), Protocatechuicaldehyde (PCA), 4-Hydroxybenzoic acid (4-HBA) and 5-Hydroxymethylfurfural (5-HMF) showed the most profound anabolic effects. After induction of inflammation, pro-inflammatory and catabolic genes were upregulated, and GAG/DNA was decreased. VA, Epi C, PS, PCA, 4-HBA and 5-HMF exhibited anti-catabolic and anti-inflammatory effects and prevented the up-regulation of pro-inflammatory markers including metalloproteinases and cyclooxygenase 2. After two weeks of treatment with TCM compounds, the GAG/DNA ratio was restored compared with the negative control group. Immunohistochemistry and Safranin-O staining confirmed superior amounts of cartilaginous matrix in treated pellets. In conclusion, VA, Epi C, PS, PCA, 4-HBA and 5-HMF showed promising anabolic and anti-inflammatory effects. Full article
Show Figures

Figure 1

13 pages, 4272 KiB  
Article
Epimedium koreanum Extract and Its Flavonoids Reduced Atherosclerotic Risk via Suppressing Modification of Human HDL
by Jae-Yong Kim and Sang Hee Shim
Nutrients 2019, 11(5), 1110; https://doi.org/10.3390/nu11051110 - 18 May 2019
Cited by 23 | Viewed by 4618
Abstract
Atherosclerosis is the key factor responsible for cardiovascular events, which is a major cause of morbidities and mortalities worldwide. It is well known that high-density lipoprotein (HDL) oxidation and glycation increases the risk for atherosclerosis. Epimedium koreanum has been used as a traditional [...] Read more.
Atherosclerosis is the key factor responsible for cardiovascular events, which is a major cause of morbidities and mortalities worldwide. It is well known that high-density lipoprotein (HDL) oxidation and glycation increases the risk for atherosclerosis. Epimedium koreanum has been used as a traditional oriental medicine for treating erectile dysfunction, kidney diseases, osteoporosis, and breast cancer. However, no reports on the effects of E. koreanum on HDL modification exist. In this study, we investigated the inhibitory effects of E. koreanum extract and its eight flavonoids, which are: (1) anhydroicaritin 3-O-rhamnoside, (2) β-anhydroicaritin, (3–5) epimedins A-C, (6) epimedoside A, (7) icariin, and (8) des-O-methyl-β-anhydroicaritin, against HDL modification. HDLs obtained from pooled human plasma samples were incubated in vitro with E. koreanum extract or each compound in the presence of copper sulfate or fructose. The HDL modifications were evaluated by measuring generation of conjugated dienes, production of thiobarbituric acid reactive substances, change in electrophoretic mobility of apoA-I, advanced glycation end products formation, and apoA-I aggregation. Consequently, E. koreanum extract and compound 8 suppressed HDL modification through inhibition of lipid peroxidation, apoA-I aggregation, negative charge increase, and AGEs formation. In particular, compound 8 showed more potent inhibitory effect on HDL modification than the extracts, suggesting its protective role against atherosclerosis via inhibition of HDL oxidation and glycation. Full article
Show Figures

Figure 1

13 pages, 727 KiB  
Article
Development and Validation of a HPLC-MS/MS Method for Simultaneous Determination of Twelve Bioactive Compounds in Epimedium: Application to a Pharmacokinetic Study in Rats
by Mengjie Sun, Yanwei Yin, Juan Wei, Xiaopeng Chen, Huizi Ouyang, Yanxu Chang, Xiumei Gao and Jun He
Molecules 2018, 23(6), 1322; https://doi.org/10.3390/molecules23061322 - 31 May 2018
Cited by 25 | Viewed by 4399
Abstract
A rapid and reliable HPLC-MS/MS method has been developed and validated for the simultaneous quantification of twelve bioactive compounds (baohuoside II, baohuoside I, sagittatoside A, sagittatoside B, magnoflorine, epimedin A, epimedin B, epimedin C, chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid and icariin) in [...] Read more.
A rapid and reliable HPLC-MS/MS method has been developed and validated for the simultaneous quantification of twelve bioactive compounds (baohuoside II, baohuoside I, sagittatoside A, sagittatoside B, magnoflorine, epimedin A, epimedin B, epimedin C, chlorogenic acid, neochlorogenic acid, cryptochlorogenic acid and icariin) in rat plasma. The collected plasma samples were prepared by protein precipitate with acetonitrile. The twelve compounds were separated on a CORTECS®C18 column (4.6 mm × 150 mm, 2.7 μm) with a gradient mobile phase system of 0.1% (v/v) formic acid and acetonitrile at a flow rate of 0.3 mL/min. All of the analytes were quantitated using electrospray ionization (ESI) in negative ion mode with selected reaction monitoring (SRM). The intra- and inter-day accuracy ranged from −5.6% to 13.0%, and the precisions of the analytes were less than 10.9%. The mean recoveries of the analytes were in the range of 60.66% to 99.77% and the matrix effect ranged from 93.08% to 119.84%. Stability studies proved that the analytes were stable under the tested conditions, with a relative standard deviation (RSD) lower than 11.7%. The developed method was successfully applied to evaluating the pharmacokinetic study of twelve bioactive compounds after oral administration of Epimedium extract in rat. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

14 pages, 1376 KiB  
Article
Potential of Icariin Metabolites from Epimedium koreanum Nakai as Antidiabetic Therapeutic Agents
by Da Hye Kim, Hyun Ah Jung, Hee Sook Sohn, Jin Woong Kim and Jae Sue Choi
Molecules 2017, 22(6), 986; https://doi.org/10.3390/molecules22060986 - 13 Jun 2017
Cited by 54 | Viewed by 6977
Abstract
The therapeutic properties of Epimedium koreanum are presumed to be due to the flavonoid component icariin, which has been reported to have broad pharmacological potential and has demonstrated anti-diabetic, anti-Alzheimer’s disease, anti-tumor, and hepatoprotective activities. Considering these therapeutic properties of icariin, its [...] Read more.
The therapeutic properties of Epimedium koreanum are presumed to be due to the flavonoid component icariin, which has been reported to have broad pharmacological potential and has demonstrated anti-diabetic, anti-Alzheimer’s disease, anti-tumor, and hepatoprotective activities. Considering these therapeutic properties of icariin, its deglycosylated icaritin and glycosylated flavonoids (icaeriside II, epimedin A, epimedin B, and epimedin C) were evaluated for their ability to inhibit protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase. The results show that icaritin and icariside II exhibit potent inhibitory activities, with 50% inhibition concentration (IC50) values of 11.59 ± 1.39 μM and 9.94 ± 0.15 μM against PTP1B and 74.42 ± 0.01 and 106.59 ± 0.44 μM against α-glucosidase, respectively. With the exceptions of icaritin and icariside II, glycosylated flavonoids did not exhibit any inhibitory effects in the two assays. Enzyme kinetics analyses revealed that icaritin and icariside II demonstrated noncompetitive-type inhibition against PTP1B, with inhibition constant (Ki) values of 11.41 and 11.66 μM, respectively. Moreover, molecular docking analysis confirmed that icaritin and icariside II both occupy the same site as allosteric ligand. Thus, the molecular docking simulation results were in close agreement with the experimental data with respect to inhibition activity. In conclusion, deglycosylated metabolites of icariin from E. koreanum might offer therapeutic potential for the treatment of type 2 diabetes mellitus. Full article
Show Figures

Figure 1

13 pages, 775 KiB  
Article
Simultaneous Quantification of Multiple Representative Components in the Xian-Ling-Gu-Bao Capsule by Ultra-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Tandem Mass Spectrometry
by Zhi-Hong Yao, Zi-Fei Qin, Hong Cheng, Xiao-Meng Wu, Yi Dai, Xin-Luan Wang, Ling Qin, Wen-Cai Ye and Xin-Sheng Yao
Molecules 2017, 22(6), 927; https://doi.org/10.3390/molecules22060927 - 2 Jun 2017
Cited by 14 | Viewed by 5484
Abstract
Xian-Ling-Gu-Bao capsule (XLGB), a famous traditional Chinese medicine prescription, is extensively used for the treatment of osteoporosis in China. However, few studies on the holistic quality control of XLGB have been reported. In this study, a reliable method using 18 representative components in [...] Read more.
Xian-Ling-Gu-Bao capsule (XLGB), a famous traditional Chinese medicine prescription, is extensively used for the treatment of osteoporosis in China. However, few studies on the holistic quality control of XLGB have been reported. In this study, a reliable method using 18 representative components in XLGB was successfully established and applied to evaluate 34 batches of XLGB samples by ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS). The choice of quantitative markers mostly followed four principles, i.e., absorbed components in plasma, bioactive compounds with in vitro anti-osteoporosis activity, those derived from multiple individual medicinal herbs in XLGB with multiple representative structure types, and quantitative chemical markers in the Chinese Pharmacopoeia. The results showed chemical consistency was good except for individual batches. Multivariate statistical analysis indicated that asperosaponin VI from Radix Dipsaci, epimedin C, magnoflorine, and icariin from Herba Epimedii as well as timosaponin BII from Rhizoma Anemarrhenae varied significantly in multiple samples, which hinted an assay for these four components should be completed during all of the manufacturing processes. Taken together, this study provided a feasible method for holistic quality control of XLGB by multiple chemical markers, which could play a vital role in guaranteeing the safety, effectiveness, and controllability of administering the capsules as a medication in clinics. Full article
Show Figures

Figure 1

12 pages, 2295 KiB  
Article
Effects of Light Intensity on the Growth, Photosynthetic Characteristics, and Flavonoid Content of Epimedium pseudowushanense B.L.Guo
by Junqian Pan and Baolin Guo
Molecules 2016, 21(11), 1475; https://doi.org/10.3390/molecules21111475 - 4 Nov 2016
Cited by 57 | Viewed by 9524
Abstract
Epimedium pseudowushanense B.L.Guo is used in traditional medicine as an aphrodisiac and to strengthen muscles and bones. Several recent reports have shown that flavonoids from Epimedium also significantly affect the treatment of breast cancer, liver cancer, and leukemia. However, few studies have examined [...] Read more.
Epimedium pseudowushanense B.L.Guo is used in traditional medicine as an aphrodisiac and to strengthen muscles and bones. Several recent reports have shown that flavonoids from Epimedium also significantly affect the treatment of breast cancer, liver cancer, and leukemia. However, few studies have examined the medicinal-ingredient yield of Epimedium, a light-demanding shade herb, under different light intensities. To investigate the effects of light intensity on medicinal-ingredient yields, Epimedium was exposed to five levels of light intensity until harvest time. Leaf dry biomass under L4 was the highest among different light treatments. L4 was also associated with the highest net photosynthetic rate. Quantification of epimedin A, epimedin B, epimedin C, and icariin showed that L3 produced the highest amount of epimedin C, and that flavonoid content responded to light levels differently. Results indicated that L3 and L4 were the optimal light levels for medicinal-ingredient yield. Full article
Show Figures

Figure 1

13 pages, 580 KiB  
Article
Study on the Mechanism of Intestinal Absorption of Epimedins A, B and C in the Caco-2 Cell Model
by Yan Chen, Ying Wang, Jing Zhou, Xia Gao, Ding Qu and Congyan Liu
Molecules 2014, 19(1), 686-698; https://doi.org/10.3390/molecules19010686 - 7 Jan 2014
Cited by 22 | Viewed by 7285
Abstract
Epimedium spp. is commonly used in Traditional Chinese Medicine. Epimedins A, B, and C are three major bioactive flavonoids found in Epimedium spp. that share similar chemical structures. In this study, the intestinal absorption mechanism of these three compounds was investigated using the [...] Read more.
Epimedium spp. is commonly used in Traditional Chinese Medicine. Epimedins A, B, and C are three major bioactive flavonoids found in Epimedium spp. that share similar chemical structures. In this study, the intestinal absorption mechanism of these three compounds was investigated using the Caco-2 cell monolayer model in both the apical-to-basolateral (A-B) and the basolateral-to-apical (B-A) direction. The absorption permeability (PAB) of epimedins A, B, and C were extremely low and increased as the concentration of the epimedins increased from 5 to 20 μM, but, at 40 μM, the PAB values were reduced. Meanwhile, the amount of transported compounds increased in a time-dependent manner. The PAB of epimedins A and C were significantly increased and efflux ratios decreased in the presence of verapamil (an inhibitor of P-glycoprotein) and dipyridamole (an inhibitor of breast cancer resistance protein) while, in the presence of MK571 (an inhibitor of multidrug resistance proteins), the absorption of epimedins A and C did not change significantly, indicating that P-gp and BCRP might be involved in the transport of epimedins A and C. The PAB of epimedin B significantly increased while its secretory permeability (PBA) significantly decreased in the presence of dipyridamole, indicating that BCRP might be involved in the transport of epimedin B. No obvious changes in the transport of epimedin B were observed in the presence of verapamil and MK571. In summary, our results clearly demonstrate, for the first time, that poor bioavailability of these three prenylated flavonoids is the result of poor intrinsic permeability and efflux by apical efflux transporters. Full article
Show Figures

Figure 1

27 pages, 5759 KiB  
Article
A Comparative Study on the Metabolism of Epimedium koreanum Nakai-Prenylated Flavonoids in Rats by an Intestinal Enzyme (Lactase Phlorizin Hydrolase) and Intestinal Flora
by Jing Zhou, Yan Chen, Ying Wang, Xia Gao, Ding Qu and Congyan Liu
Molecules 2014, 19(1), 177-203; https://doi.org/10.3390/molecules19010177 - 24 Dec 2013
Cited by 57 | Viewed by 8908
Abstract
The aim of this study was to compare the significance of the intestinal hydrolysis of prenylated flavonoids in Herba Epimedii by an intestinal enzyme and flora. Flavonoids were incubated at 37 °C with rat intestinal enzyme and intestinal flora. HPLC-UV was used to [...] Read more.
The aim of this study was to compare the significance of the intestinal hydrolysis of prenylated flavonoids in Herba Epimedii by an intestinal enzyme and flora. Flavonoids were incubated at 37 °C with rat intestinal enzyme and intestinal flora. HPLC-UV was used to calculate the metabolic rates of the parent drug in the incubation and LC/MS/MS was used to determine the chemical structures of metabolites generated by different flavonoid glycosides. Rates of flavonoid metabolism by rat intestinal enzyme were quicker than those of intestinal flora. The sequence of intestinal flora metabolic rates was icariin > epimedin B > epimedin A > epimedin C > baohuoside I, whereas the order of intestinal enzyme metabolic rates was icariin > epimedin A > epimedin C > epimedin B > baohuoside I. Meanwhile, the LC/MS/MS graphs showed that icariin produced three products, epimedin A/B/C had four and baohuoside I yielded one product in incubations of both intestinal enzyme and flora, which were more than the results of HPLC-UV due to the fact LC/MS/MS has lower detectability and higher sensitivity. Moreover, the outcomes indicated that the rate of metabolization of flavonoids by intestinal enzyme were faster than those of intestinal flora, which was consistent with the HPLC-UV results. In conclusion, the metabolic pathways of the same components by intestinal flora and enzyme were the same. What’s more, an intestinal enzyme such as lactase phlorizin hydrolase exhibited a more significant metabolic role in prenylated flavonoids of Herba Epimedi compared with intestinal flora. Full article
Show Figures

Figure 1

13 pages, 681 KiB  
Article
Metabolite Profiling of Four Major Flavonoids of Herba Epimdii in Zebrafish
by Yingjie Wei, Ping Li, Hongwei Fan, E Sun, Changmei Wang, Luan Shu, Wei Liu, Xiaolu Xue, Qian Qian and Xiaobin Jia
Molecules 2012, 17(1), 420-432; https://doi.org/10.3390/molecules17010420 - 4 Jan 2012
Cited by 30 | Viewed by 7053
Abstract
The zebrafish model organism was applied first in a metabolic study of icariin, baohuoside I, epimedin A and epimedin C, which are flavonoids in Herba Epimedii. Metabolites of these compounds in zebrafish after exposure for 24 h were identified by HPLC-ESI-MS, whereby [...] Read more.
The zebrafish model organism was applied first in a metabolic study of icariin, baohuoside I, epimedin A and epimedin C, which are flavonoids in Herba Epimedii. Metabolites of these compounds in zebrafish after exposure for 24 h were identified by HPLC-ESI-MS, whereby the separation was performed with a Zorbax C-18 column using a gradient elution of 0.05% formic acid acetonitrile-0.05% formic acid water. The quasi-molecular ions of compounds were detected in simultaneous negative and positive ionization modes. Metabolic products of icariin and epimedin C via cleavage of glucose residue instead of rhamnose residues were found, which coincided with the results using regular metabolic analysis methods. In addition, the zebrafish model was used to predict the metabolism of the trace component epimedin A, whose metabolic mechanisms haven’t been clearly elucidated with the current metabolism model. The metabolic pathway of epimedin A in zebrafish was similar to those of its homologue icariin and epimedin C. Our study demonstrated that the zebrafish model can successfully imitate the current models in elucidating metabolic pathways of model flavonoids, which has advantages of lower cost, far less amount of compound needed, easy set up and high performance. This novel model can also be applied in quickly predicting the metabolism of Chinese herb components, especially trace compounds. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

Back to TopTop