Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = endometrial explant model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 9022 KB  
Article
Production of Mare Chorionic Girdle Organoids That Secrete Equine Chorionic Gonadotropin
by Riley E. Thompson, Mindy A. Meyers, Jennifer Palmer, D. N. Rao Veeramachaneni, Christianne Magee, Amanda M. de Mestre, Douglas F. Antczak and Fiona K. Hollinshead
Int. J. Mol. Sci. 2023, 24(11), 9538; https://doi.org/10.3390/ijms24119538 - 31 May 2023
Cited by 6 | Viewed by 3384
Abstract
The equine chorionic girdle is comprised of specialized invasive trophoblast cells that begin formation approximately 25 days after ovulation (day 0) and invade the endometrium to become endometrial cups. These specialized trophoblast cells transition from uninucleate to differentiated binucleate trophoblast cells that secrete [...] Read more.
The equine chorionic girdle is comprised of specialized invasive trophoblast cells that begin formation approximately 25 days after ovulation (day 0) and invade the endometrium to become endometrial cups. These specialized trophoblast cells transition from uninucleate to differentiated binucleate trophoblast cells that secrete the glycoprotein hormone equine chorionic gonadotropin (eCG; formerly known as pregnant mare serum gonadotropin or PMSG). This eCG has LH-like activity in the horse but variable LH- and FSH-like activity in other species and has been utilized for these properties both in vivo and in vitro. To produce eCG commercially, large volumes of whole blood must be collected from pregnant mares, which negatively impacts equine welfare due to repeated blood collections and the birth of an unwanted foal. Attempts to produce eCG in vitro using long-term culture of chorionic girdle explants have not been successful beyond 180 days, with peak eCG production at 30 days of culture. Organoids are three-dimensional cell clusters that self-organize and can remain genetically and phenotypically stable throughout long-term culture (i.e., months). Human trophoblast organoids have been reported to successfully produce human chorionic gonadotropin (hCG) and proliferate long-term (>1 year). The objective of this study was to evaluate whether organoids derived from equine chorionic girdle maintain physiological functionality. Here we show generation of chorionic girdle organoids for the first time and demonstrate in vitro production of eCG for up to 6 weeks in culture. Therefore, equine chorionic girdle organoids provide a physiologically representative 3D in vitro model for chorionic girdle development of early equine pregnancy. Full article
(This article belongs to the Special Issue Organoids: The New 3D-Frontier to Model Different Diseases In Vitro)
Show Figures

Figure 1

14 pages, 1139 KB  
Article
Characterization of an Ex Vivo Equine Endometrial Tissue Culture Model Using Next-Generation RNA-Sequencing Technology
by Maithê R. Monteiro de Barros, Mina C. G. Davies-Morel, Luis A. J. Mur, Christopher J. Creevey, Roger H. Alison and Deborah M. Nash
Animals 2021, 11(7), 1995; https://doi.org/10.3390/ani11071995 - 3 Jul 2021
Cited by 3 | Viewed by 5334
Abstract
Persistent mating-induced endometritis is a major cause of poor fertility rates in the mare. Endometritis can be investigated using an ex vivo equine endometrial explant system which measures uterine inflammation using prostaglandin F as a biomarker. However, this model has yet to [...] Read more.
Persistent mating-induced endometritis is a major cause of poor fertility rates in the mare. Endometritis can be investigated using an ex vivo equine endometrial explant system which measures uterine inflammation using prostaglandin F as a biomarker. However, this model has yet to undergo a wide-ranging assessment through transcriptomics. In this study, we assessed the transcriptomes of cultured endometrial explants and the optimal temporal window for their use. Endometrium harvested immediately post-mortem from native pony mares (n = 8) were sampled (0 h) and tissue explants were cultured for 24, 48 and 72 h. Tissues were stored in RNALater, total RNA was extracted and sequenced. Differentially expressed genes (DEGs) were defined using DESeq2 (R/Bioconductor). Principal component analysis indicated that the greatest changes in expression occurred in the first 24 h of culture when compared to autologous biopsies at 0 h. Fewer DEGs were seen between 24 and 48 h of culture suggesting the system was more stable than during the first 24 h. No genes were differentially expressed between 48 and 72 h but the low number of background gene expression suggested that explant viability was compromised after 48 h. ESR1, MMP9, PTGS2, PMAIP1, TNF, GADD45B and SELE genes were used as biomarkers of endometrial function, cell death and inflammation across tissue culture timepoints. STRING assessments of gene ontology suggested that DEGs between 24 and 48 h were linked to inflammation, immune system, cellular processes, environmental information processing and signal transduction, with an upregulation of most biomarker genes at 24 h. Taken together our observations indicated that 24–48 h is the optimal temporal window when the explant model can be used, as explants restore microcirculation, perform wound healing and tackle inflammation during this period. This key observation will facilitate the appropriate use of this as a model for further research into the equine endometrium and potentially the progression of mating-induced endometritis to persistent inflammation between 24 and 48 h. Full article
(This article belongs to the Collection Endometritis and Fibrosis: An Evolving Story)
Show Figures

Figure 1

14 pages, 1051 KB  
Article
Concentration-Dependent Type 1 Interferon-Induced Regulation of MX1 and FABP3 in Bovine Endometrial Explants
by Simone Tamara Schabmeyer, Anna Maria Kneidl, Julia Katharina Schneider, Sandra Kirsch, Yury Zablotski, Wolfram Petzl, Frank Weber, Holm Zerbe and Marie Margarete Meyerholz
Animals 2021, 11(2), 262; https://doi.org/10.3390/ani11020262 - 21 Jan 2021
Cited by 4 | Viewed by 3220
Abstract
The inadequate maternal recognition of embryonic interferon τ (IFNτ) might explain subfertility in cattle. This study aimed at modeling the inducibility of type 1 interferon receptor subunits 1/2 (IFNAR1/2), mimicking competition between IFNτ and infection-associated interferon α (IFNα), and simulating type 1 interferon [...] Read more.
The inadequate maternal recognition of embryonic interferon τ (IFNτ) might explain subfertility in cattle. This study aimed at modeling the inducibility of type 1 interferon receptor subunits 1/2 (IFNAR1/2), mimicking competition between IFNτ and infection-associated interferon α (IFNα), and simulating type 1 interferon pathways in vitro. Endometrial explants (n = 728 from n = 26 healthy uteri) were collected at the abattoir, challenged with IFNτ and/or IFNα in different concentrations, and incubated for 24 h. Gene expression analysis confirmed the inducibility of IFNAR1/2 within this model, it being most prominent in IFNAR2 with 10 ng/mL IFNα (p = 0.001). The upregulation of interferon-induced GTP-binding protein (MX1, classical pathway) was higher in explants treated with 300 ng/mL compared to 10 ng/mL IFNτ (p < 0.0001), whereas the non‑classical candidate fatty acid binding protein 3 (FABP3) exhibited significant downregulation comparing 300 ng/mL to 10 ng/mL IFNτ. The comparison of explants challenged with IFNτ + IFNα indicated the competition of IFNτ and IFNα downstream of the regulatory factors. In conclusion, using this well-defined explant model, interactions between infection-associated signals and IFNτ were indicated. This model can be applied to verify these findings and to mimic and explore the embryo–maternal contact zone in more detail. Full article
(This article belongs to the Special Issue Reproductive Management)
Show Figures

Figure 1

Back to TopTop