Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = emission Euro norms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2328 KiB  
Review
Impact of Modern Vehicular Technologies and Emission Regulations on Improving Global Air Quality
by Sai Sudharshan Ravi, Sergey Osipov and James W. G. Turner
Atmosphere 2023, 14(7), 1164; https://doi.org/10.3390/atmos14071164 - 18 Jul 2023
Cited by 33 | Viewed by 13765
Abstract
Over the past few decades, criteria emissions such as carbon monoxide (CO), hydrocarbons (HCs), nitrogen oxides (NOx) and particulate matter (PM) from transportation have decreased significantly, thanks to stricter emission standards and the widespread adoption of cleaner technologies. While air quality is a [...] Read more.
Over the past few decades, criteria emissions such as carbon monoxide (CO), hydrocarbons (HCs), nitrogen oxides (NOx) and particulate matter (PM) from transportation have decreased significantly, thanks to stricter emission standards and the widespread adoption of cleaner technologies. While air quality is a complex problem that is not solely dependent on transportation emissions, it does play a significant role in both regional and global air quality levels. Emission standards such as Euro 1–6 in Europe, Corporate Average Fuel Economy (CAFE) regulations, Tier I—III standards in the US and the low emission vehicle (LEV) program in California have all played a huge role in bringing down transportation emissions and hence improving air quality overall. This article reviews the effect of emissions from transportation, primarily focusing on criteria emissions from road transport emissions and highlights the impact of some of the novel technological advances that have historically helped meet these strict emission norms. The review also notes how modern road engine vehicles emissions compare with national and international aviation and shipping and discusses some of the suggested Euro 7 emissions standards and their potential to improve air quality. Full article
Show Figures

Figure 1

14 pages, 2396 KiB  
Article
Scenario Analysis of Air Quality Improvement in Warsaw, Poland, by the End of the Current Decade
by Piotr Holnicki, Andrzej Kałuszko and Zbigniew Nahorski
Atmosphere 2022, 13(10), 1613; https://doi.org/10.3390/atmos13101613 - 2 Oct 2022
Cited by 12 | Viewed by 3479
Abstract
Very low air quality in the Warsaw conurbation, Poland, similarly to the case in many large European cities, poses a serious threat to the residents’ health, being a significant source of premature mortality. Many results presented in earlier publications indicated local heating installations [...] Read more.
Very low air quality in the Warsaw conurbation, Poland, similarly to the case in many large European cities, poses a serious threat to the residents’ health, being a significant source of premature mortality. Many results presented in earlier publications indicated local heating installations and car traffic as the main emission categories responsible for this adverse population exposure, where the dominant polluting compounds are NOx, PM10, PM2.5, and BaP. The last two mainly originate from individual household heating installations, both in the city of Warsaw and in its vicinity. To reduce the health risk of air pollution, the city authorities have recently made fundamental decisions, related to the individual housing sector, aimed at the radical decarbonization of all heating installations in Warsaw and its surroundings. On the other hand, the ongoing modernization of the city’s car fleet (including individual and public transport), taking into account the restrictive EU emission standards, as well as the quickly growing share of electric and hybrid cars (BEVs and PHEVs), gives a good prospect of a fundamental improvement in air quality in Warsaw conurbation. The main subject of the paper is a quantitative assessment of the air quality improvement in the current decade (by 2030), resulting from the above modernization activities. The final results are expressed as the attributed reduction in population exposure, which was found to be 28–30% with respect to NOx and PM, and the associated health risk, i.e., 204 fewer avoidable deaths with respect to NOx and 607 fewer with respect to PM2.5. Full article
Show Figures

Figure 1

22 pages, 10235 KiB  
Article
Exhaust Emissions Measurement of a Vehicle with Retrofitted LPG System
by Branislav Šarkan, Marek Jaśkiewicz, Przemysław Kubiak, Dariusz Tarnapowicz and Michal Loman
Energies 2022, 15(3), 1184; https://doi.org/10.3390/en15031184 - 6 Feb 2022
Cited by 27 | Viewed by 3855
Abstract
The aim of this study was to compare and evaluate the production of exhaust emissions from a vehicle with a petrol engine with the Euro 4 emission standard and powered by petrol and LPG (liquefied petroleum gas). The paper presents new possibilities for [...] Read more.
The aim of this study was to compare and evaluate the production of exhaust emissions from a vehicle with a petrol engine with the Euro 4 emission standard and powered by petrol and LPG (liquefied petroleum gas). The paper presents new possibilities for monitoring exhaust emissions using an exhaust gas analyzer. At the same time, it points out the topicality and significance of the issue in the monitored area. It examines the impact of a change in fuel on emissions. This change is monitored in various areas of vehicle operation. Measurements were performed during real operation, which means that the results are fully usable and applicable in practice. The driving simulation as well as the test conditions correspond to the RDE (Real Driving Emissions) test standard. A commercially available car was first selected to perform the tests, which was first measured in the original configuration (petrol drive). Based on real-time RDE driving tests, it is possible to determine the number of exhaust emissions. Subsequently, the same measurements were performed with the same vehicle, but the vehicle’s propulsion was changed to LPG. The vehicle was equipped with an additional system that allowed the vehicle to be powered by LPG. The results from the individual driving tests allowed the determination of the exhaust emissions. Emissions of CO (carbon monoxide), CO2 (carbon dioxide), HC (hydrocarbons), and NOx (nitrogen oxides) were monitored as a matter of priority. Through the driving tests, it was found that the gasoline combustion produced higher CO (1.926 g/km) and CO2 (217.693 g/km) emissions compared to the combustion of liquefied gas, where the concentration of the CO emissions was 1.892 g/km and that of the CO2 emissions was 213.966 g/km. In contrast, the HC (0.00397 g/km) and NOx (0.03107 g/km) emissions were lower when petrol was burned. During LPG combustion, the HC emissions reached 0.00430 g/km, and the NOx emissions reached 0.05134 g/km. At the end of the research, the authors compared the emissions determined by real driving (in g/km) with the emission values produced by the emission standard EURO 4 and the certificate of conformity (COC). Practical measurements showed that the vehicle produced excessive amounts of CO when burning gasoline. This production is 0.926 g/km higher and 0.892 g/km higher when burning LPG compared to the limit set by the Euro 4 Emission Standard. The difference is even greater than the limit value stated in the COC document. For other substances, the monitored values are in the norm and are even far below the permitted value Full article
Show Figures

Figure 1

11 pages, 2970 KiB  
Article
Impact of Vehicle Fleet Modernization on the Traffic-Originated Air Pollution in an Urban Area—A Case Study
by Piotr Holnicki, Zbigniew Nahorski and Andrzej Kałuszko
Atmosphere 2021, 12(12), 1581; https://doi.org/10.3390/atmos12121581 - 27 Nov 2021
Cited by 23 | Viewed by 4748
Abstract
The main subject of this paper is an analysis of the influence of changes in the air pollution caused by road traffic, due to its modernization, on the air quality in Warsaw conurbation, Poland. Using the Calpuff model, simulations of the yearly averaged [...] Read more.
The main subject of this paper is an analysis of the influence of changes in the air pollution caused by road traffic, due to its modernization, on the air quality in Warsaw conurbation, Poland. Using the Calpuff model, simulations of the yearly averaged concentrations of NOx, CO, PM10, and PM2.5 were performed, together with an assessment of the population exposure to individual pollutions. Source apportionment analysis indicates that traffic is the main source of NOx and CO concentrations in the city atmosphere. Utilizing the Euro norms emission standards, a scenario of vehicle emission abatement is formulated based on the assumed general vehicle fleet modernization and transition to Euro 6 emission standards. Computer simulations show a reduction in NOx concentrations attributed to emission mitigation of passenger cars, trucks and vans, and public transport buses, respectively. On the other hand, improving air quality in terms of CO concentrations depends almost exclusively on gasoline vehicle modernization. The implementation of the considered scenario causes an adequate reduction in the population exposure and related health effects. In particular, implementation of the scenario discussed results in a 47% reduction (compared with the baseline value) in the attributable yearly deaths related to NOx pollution. In spite of a substantial contribution of vehicle traffic to the overall PM pollution, modernization of the fuel combustion causes only minor final effects because the dominant share of PM pollution in Warsaw originates from the municipal sector and the transboundary inflow. Full article
Show Figures

Figure 1

28 pages, 10818 KiB  
Article
Optimization of Piston Grooves, Bridges on Cylinder Head, and Inlet Valve Masking of Home-Fueled Diesel Engine by Response Surface Methodology
by Mathad R. Indudhar, Nagaraj R. Banapurmath, K. Govinda Rajulu, Arun Y. Patil, Syed Javed and T. M. Yunus Khan
Sustainability 2021, 13(20), 11411; https://doi.org/10.3390/su132011411 - 15 Oct 2021
Cited by 9 | Viewed by 3058
Abstract
Naturally replenished biodiesel fuels are more precise in place of diesel engine applications as they have complying thermal properties, which are extensively used by various researchers. However, there is necessity to optimize their utility to meet stringent emission norms as per Bharat Stage [...] Read more.
Naturally replenished biodiesel fuels are more precise in place of diesel engine applications as they have complying thermal properties, which are extensively used by various researchers. However, there is necessity to optimize their utility to meet stringent emission norms as per Bharat Stage VI (BS VI) and Euro 6. From the exhaustive survey on the studies, number of piston grooves (NG), number of grooves-n-bridges on cylinder head (Gr-Br), and inlet valve masking (IVM) using the response surface methodologies (RSM) technique have not been reported on the competence, emissions, and combustion attributes of diesel engines running on Honge oil methyl ester (HOME), hence this is an identified gap in literature. The present simulation work is for optimizing the performance and lessoning exhaust emitted from the diesel prime mover tested on non-conventional and petro fuels. Experimentation was carried out to inquest the competence, combustion, and emittance of a vertical cylinder, overhead valve, water cooling, open or induction swirl diesel engine running on HOME as the injecting fuel. The object of the present effort is to optimize competence of diesel engines via a statistics inquest called designs of experiments (DoE). To curtail the diverse variations to be experimented on, full factorial designs (FFDs) array was employed. The response surface methodologies (RSM)-based nonlinear or quadratic predictors establish the relation between the input parameters and proposed attributes. The RSM-based mathematical predictors are established to prognosticate the distinguished engine output attributes at 95% confidence interval. The response surface assay discovered that a combination of 2B 3G, ‘IVM’ of 90°, and ‘NG’ of six grooves yields highest brake thermal efficiency (BTE), lessoning smoke, carbon monoxide (CO), and hydrocarbon (HC), but nitrogenous oxides (NOx) emissions increased slightly. Additionally, combustion attributes, such as Ignition delay (ID) and combustion duration (CD), were lessoned, but peak pressure (PP) and heat release rate (HRR) had a higher contrast to performance of HOME biodiesel in a conventional CI engine. Full article
Show Figures

Figure 1

34 pages, 4168 KiB  
Review
An Overview on the Catalytic Materials Proposed for the Simultaneous Removal of NOx and Soot
by Lidia Castoldi
Materials 2020, 13(16), 3551; https://doi.org/10.3390/ma13163551 - 12 Aug 2020
Cited by 23 | Viewed by 3694
Abstract
Vehicular pollution has become a major problem in urban areas due to the exponential increase in the number of automobiles. Typical exhaust emissions, which include nitrogen oxides (NOx), hydrocarbons (HC), carbon monoxide (CO), soot, and particulate matter (PM), doubtless have important [...] Read more.
Vehicular pollution has become a major problem in urban areas due to the exponential increase in the number of automobiles. Typical exhaust emissions, which include nitrogen oxides (NOx), hydrocarbons (HC), carbon monoxide (CO), soot, and particulate matter (PM), doubtless have important negative effects on the environment and human health, including cardiovascular effects such as cardiac arrhythmias and heart attacks, and respiratory effects such as asthma attacks and bronchitis. The mitigation measures comprise either the use of clean alternative fuels or the use of innovative technologies. Several existing emission control technologies have proven effective at controlling emissions individually, such as selective catalytic reduction (SCR) and lean NOx trap (LNT) to reduce NOx and diesel particulate filter (DPF) specifically for PM abatement. These after-treatment devices are the most profitable means to reduce exhaust emissions to acceptable limits (EURO VI norms) with very little or no impact on the engine performances. Additionally, the relative lack of physical space in which to install emissions-control equipment is a key challenge for cars, especially those of small size. For this reason, to reduce both volume and cost of the after-treatment devices integrated catalytic systems (e.g., a sort of a “single brick”) have been proposed, reducing both NOx and PM simultaneously. This review will summarize the currently reported materials for the simultaneous removal of NOx and soot, with particular attention to their nature, properties, and performances. Full article
(This article belongs to the Special Issue Nanocatalysts for Oxidation and Combustion)
Show Figures

Figure 1

Back to TopTop