Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = embankment weir

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3493 KiB  
Article
A Coupled River–Overland (1D-2D) Model for Fluvial Flooding Assessment with Cellular Automata
by Hsiang-Lin Yu, Tsang-Jung Chang, Chia-Ho Wang and Shyh-Yuan Maa
Water 2024, 16(18), 2703; https://doi.org/10.3390/w16182703 - 23 Sep 2024
Cited by 2 | Viewed by 1676
Abstract
To provide accurate and efficient forecasting of fluvial flooding assessment in the river basin, the present study links the well-known CA-based urban inundation modeling (2D-OFM-CA) with a one-dimensional river flow model (1D-RFM) as a coupled 1D-2D river–overland modeling. Rules to delineate the geometric [...] Read more.
To provide accurate and efficient forecasting of fluvial flooding assessment in the river basin, the present study links the well-known CA-based urban inundation modeling (2D-OFM-CA) with a one-dimensional river flow model (1D-RFM) as a coupled 1D-2D river–overland modeling. Rules to delineate the geometric linking between the 1D-RFM and 2D-OFM-CA along embankments are developed. The corresponding exchanged water volume across an embankment is then computed by using the free and submerged weir flow formulas. The applicability of the proposed coupled model on fluvial flooding assessment is then assessed and compared with a well-recognized commercial software (HEC-RAS model) through an idealized fluvial case and an extensively studied real-scale fluvial case in the Severn River Basin. Based on the simulated results concerning the numerical accuracy, the coupled model is found to give similar results in the aspects of the river flow and overland flow modeling in both two study cases, which demonstrates the effectiveness of the linking methodology between the 1D-RFM and 2D-OFM-CA. From the viewpoint of numerical efficiency, the coupled model is 47% and 41% faster than the HEC-RAS model in the two cases, respectively. The above results indicate that the coupled model can reach almost the same accuracy as the HEC-RAS model with an obvious reduction in its computational time. Hence, it is concluded that the coupled model has considerable potential to be an effective alternative for fluvial flooding assessment in the river basin. Full article
(This article belongs to the Special Issue Advances in Hydraulic and Water Resources Research (2nd Edition))
Show Figures

Figure 1

19 pages, 4469 KiB  
Article
Physical Model Study on Discharge over a Dam Due to Landslide Generated Waves
by Netsanet Nigatu Tessema, Fjóla G. Sigtryggsdóttir, Leif Lia and Asie Kemal Jabir
Water 2020, 12(1), 234; https://doi.org/10.3390/w12010234 - 15 Jan 2020
Cited by 1 | Viewed by 5009
Abstract
Impulse waves generated by landslides falling into reservoirs may lead to overtopping of a dam and, in turn, to flooding of the downstream area. In the case of an embankment dam, the overtopping may lead to erosion of the downstream slope, ultimately resulting [...] Read more.
Impulse waves generated by landslides falling into reservoirs may lead to overtopping of a dam and, in turn, to flooding of the downstream area. In the case of an embankment dam, the overtopping may lead to erosion of the downstream slope, ultimately resulting in breaching and complete failure with consequent further hazardous release of water to the downstream area. This research deals with the overtopping process of a dam due to landslide generated waves in a three-dimensional (3D) physical scale model setup. Experiments have been conducted with varying the slide, reservoir, and dam parameters. The primary focus is on investigating the feasibility of employing the steady state weir equation in order to predict the overtopping discharge over a dam crest due to landslide generated waves. Calibration and validation of the coefficient of discharge values for the different dam section are conducted for the specified model setup. Accordingly, a two-step calculation procedure is presented for predicting the overtopping discharge based on the maximum overtopping depth values. Hence, for the fixed setup, which includes a constant slope angle of the landslide surface, a predictive equation for maximum overtopping depth is proposed, based on slide volume, slide release height, still water depth, upstream dam slope angle, and dam height. The relative slide volume and relative still water depth both seem to have a significant effect on the relative overtopping depth. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

26 pages, 4061 KiB  
Article
Investigation of Free Surface Turbulence Damping in RANS Simulations for Complex Free Surface Flows
by Arun Kamath, Gábor Fleit and Hans Bihs
Water 2019, 11(3), 456; https://doi.org/10.3390/w11030456 - 4 Mar 2019
Cited by 45 | Viewed by 6621
Abstract
The modelling of complex free surface flows over weirs and in the vicinity of bridge piers is presented in a numerical model emulating open channel flow based on the Reynolds Averaged Navier-Stokes (RANS) equations. The importance of handling the turbulence at the free [...] Read more.
The modelling of complex free surface flows over weirs and in the vicinity of bridge piers is presented in a numerical model emulating open channel flow based on the Reynolds Averaged Navier-Stokes (RANS) equations. The importance of handling the turbulence at the free surface in the case of different flow regimes using an immiscible two-phase RANS Computational Fluid Dynamics (CFD) model is demonstrated. The free surface restricts the length scales of turbulence and this is generally not accounted for in standard two-equation turbulence modelling approaches. With the two-phase flow approach, large-velocity gradients across the free surface due to the large difference in the density of the fluids can lead to over-production of turbulence. In this paper, turbulence at the free surface is restricted with an additional boundary condition for the turbulent dissipation. The resulting difference in the free surface features and the consequences for the solution of the flow problem is discussed for different flow conditions. The numerical results for the free surface and stream-wise velocity gradients are compared to experimental data to show that turbulence damping at the free surface provides a better representation of the flow features in all the flow regimes and especially in cases with rapidly varying flow conditions. Full article
(This article belongs to the Special Issue Advances in Hydraulics and Hydroinformatics)
Show Figures

Figure 1

22 pages, 8373 KiB  
Article
Morphodynamic Trends of the Ribb River, Ethiopia, Prior to Dam Construction
by Chalachew A. Mulatu, Alessandra Crosato, Michael M. Moges, Eddy J. Langendoen and Michael McClain
Geosciences 2018, 8(7), 255; https://doi.org/10.3390/geosciences8070255 - 9 Jul 2018
Cited by 27 | Viewed by 7140
Abstract
The meandering Ribb River flows in northwest Ethiopia to Lake Tana, the source of the Blue Nile River. The river has already undergone changes due to several human interventions, such as embanking, sand mining, water extraction and lake level regulation for hydropower. At [...] Read more.
The meandering Ribb River flows in northwest Ethiopia to Lake Tana, the source of the Blue Nile River. The river has already undergone changes due to several human interventions, such as embanking, sand mining, water extraction and lake level regulation for hydropower. At present, a dam and a weir are under construction to store and divert water for irrigation. This will strongly alter both water and sediment discharges to the downstream river reaches, causing adjustments to the morphology. Assessing the current morphodynamic trends is the first necessary step to study the future effects and find ways to mitigate them. This paper presents an analysis of the current and past river based on newly collected data, aerial photographs, SPOT and Google Earth images. The riverbed changes are derived from historical staff gauge height analysis. The effects of sediment mining and water extraction are assessed using the theory of morphodynamic equilibrium. The findings of the analysis show a reduction of sediment transport capacity in the downstream direction, which has resulted in intense sediment deposition, resulting in blockage of the Lower River reach and subsequent channel avulsion. The effects of Lake Tana level regulation on the observed processes appear to be minor. Full article
Show Figures

Figure 1

19 pages, 5432 KiB  
Article
Groundwater Engineering in an Environmentally Sensitive Urban Area: Assessment, Landuse Change/Infrastructure Impacts and Mitigation Measures
by Yohannes Yihdego, Cara Danis and Andrew Paffard
Hydrology 2017, 4(3), 37; https://doi.org/10.3390/hydrology4030037 - 12 Jul 2017
Cited by 10 | Viewed by 7601
Abstract
A rise in the shallow unconfined groundwater at a site in Australia is causing water logging of the underground facility in the affected area. Realizing this problem, a study was conducted to identify the source of water that is causing the rise and [...] Read more.
A rise in the shallow unconfined groundwater at a site in Australia is causing water logging of the underground facility in the affected area. Realizing this problem, a study was conducted to identify the source of water that is causing the rise and to develop an implementation and operation plan of the mitigation (dewatering system). Modelling was undertaken using MODFLOW-SURFACT code, within the framework of Visual MODFLOW, to assess the spatial and temporal groundwater level at the site. The study undertaken incorporates compilation and assessment of available data, including a list of factual information reviewed, development of a conceptual groundwater model for the site and modelling of the pre and post development conditions. The outcomes of the assessment indicate water level rises due to the construction of the embankment are likely less than 0.12 m and changes in land, such as affected area burial, may change aquifer characteristics more significantly than the embankment. It is concluded that the elevated groundwater levels in the affected area are most likely a result of above average rainfall since 2007 and long term cumulative land use changes. The embankment construction is just one of many land use changes that have occurred both within and surrounding the affected area and likely only a minor contributor to the elevated water levels. Greater contribution may be attributed to re-direction of the natural flow paths the railway culvert weir reducing the overland flow gradient and ongoing changes (burial) within the affected area and including the embankment. The model findings gives answers on what factors may be/are causing/contributing to, the higher than usual groundwater levels in the study area. A combination of drainage and/or pumping (dewatering system) is suggested as a solution to overcome the problem of rising groundwater levels at the site. Further, the model output can aid in assessing mitigation options, including horizontal drainage networks and pumping to control for the rising water table conditions in the area, depending on the level of treatment and pathogenic criteria. Full article
Show Figures

Figure 1

Back to TopTop