Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = elephant foot buckling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7210 KiB  
Article
Polyethylene Storage Tanks Strengthened Externally with Fiber-Reinforced Polymer Laminates
by Ghassan Hachem, Wassim Raphael and Rafic Faddoul
Polymers 2025, 17(13), 1858; https://doi.org/10.3390/polym17131858 - 3 Jul 2025
Viewed by 534
Abstract
Polyethylene storage tanks are widely used for storing water and chemicals due to their lightweight and corrosion-resistant properties. Despite these advantages, their structural performance under seismic conditions remains a concern, mainly because of their low mechanical strength and weak bonding characteristics. In this [...] Read more.
Polyethylene storage tanks are widely used for storing water and chemicals due to their lightweight and corrosion-resistant properties. Despite these advantages, their structural performance under seismic conditions remains a concern, mainly because of their low mechanical strength and weak bonding characteristics. In this study, a method of external strengthening using fiber-reinforced polymer (FRP) laminates is proposed and explored. The research involves a combination of laboratory testing on carbon fiber-reinforced polymer (CFRP)-strengthened polyethylene strips and finite element simulations aimed at assessing bond strength, anchorage length, and structural behavior. Results from tensile tests indicate that slippage tends to occur unless the anchorage length exceeds approximately 450 mm. To evaluate surface preparation, grayscale image analysis was used, showing that mechanical sanding increased intensity variation by over 127%, pointing to better bonding potential. Simulation results show that unreinforced tanks under seismic loads display stress levels beyond their elastic limit, along with signs of elephant foot buckling—common in thin-walled cylindrical structures. Applying CFRPs in a full-wrap setup notably reduced these effects. This approach offers a viable alternative to full tank replacement, especially in regions where cost, access, or operational constraints make replacement impractical. The applicability is particularly valuable in seismically active and densely populated areas, where rapid, non-invasive retrofitting is essential. Based on the experimental findings, a simple formula is proposed to estimate the anchorage length required for effective crack repair. Overall, the study demonstrates that CFRP retrofitting, paired with proper surface treatment, can significantly enhance the seismic performance of polyethylene tanks while avoiding costly and disruptive replacement strategies. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Figure 1

22 pages, 9096 KiB  
Article
Assessment of Steel Storage Tank Thickness Obtained from the API 650 Design Procedure Through Nonlinear Dynamic Analysis, Accounting for Large Deformation Effects
by Sobhan Fallah Daryavarsari and Roberto Nascimbene
Materials 2025, 18(1), 66; https://doi.org/10.3390/ma18010066 - 27 Dec 2024
Cited by 2 | Viewed by 2163
Abstract
This study evaluates the API 650 design procedure for steel storage tanks, incorporating nonlinear dynamic analysis with large deformation effects. Focusing on seismic vulnerability, the case study examines storage tanks proposed for construction in Naples, Italy, assessing their performance under site-specific seismic conditions. [...] Read more.
This study evaluates the API 650 design procedure for steel storage tanks, incorporating nonlinear dynamic analysis with large deformation effects. Focusing on seismic vulnerability, the case study examines storage tanks proposed for construction in Naples, Italy, assessing their performance under site-specific seismic conditions. A target spectrum and 20 earthquake records were selected to reflect regional seismic characteristics. Initial tank thicknesses were calculated using API 650 guidelines and subsequently analyzed through nonlinear time-history simulations in SAP2000. Results reveal that thicknesses derived from API 650s linear average spectrum equations are insufficient for real seismic demands. Through a trial-and-error methodology, optimal thicknesses were determined to ensure satisfactory performance across all seismic records. Key findings highlight significant variations in mode participation, the frequent occurrence of elephant-foot buckling in tanks with lower H/R ratios, and the limitations of linear spectral analysis for realistic earthquake scenarios. Given the vital role of storage tanks in the oil and gas industry, this study emphasizes the need to integrate nonlinear time history analysis into design processes to enhance seismic resilience, particularly in high-risk regions. Full article
Show Figures

Figure 1

32 pages, 8304 KiB  
Article
Investigation on the Performance of Partial Penetration Welds in Multicell Concrete Filled Steel Tubes
by Lian-Jin Bao, Fei-Fei Sun, Osama Mughrabi, Liu-Lian Li and Guo-Qiang Li
Materials 2021, 14(24), 7543; https://doi.org/10.3390/ma14247543 - 8 Dec 2021
Cited by 1 | Viewed by 2792
Abstract
This paper presents an experimental and analytical investigation on the performance of partial penetration welds used to adjoin steel plates in irregular shaped multicell concrete filled steel tubes. The experimental program of this study is designed based on an actual implementation of such [...] Read more.
This paper presents an experimental and analytical investigation on the performance of partial penetration welds used to adjoin steel plates in irregular shaped multicell concrete filled steel tubes. The experimental program of this study is designed based on an actual implementation of such members as mega columns in a super high rise building in China. A total of six specimens are designed with different plate arrangements for the purpose of testing the performance of the partial penetration welds at different locations of the specimen. The designed specimens are tested under different load procedures and directions; this is achieved by placing them in vertical and slantwise manners between two loading plates which impose monotonic and cyclic actions. The failure conditions of each of the tested specimens are presented and discussed in detail and are based on the conclusions drawn from the experimental observations; the partial penetration weld at the corner of the tested specimens is found to be the most vulnerable. To facilitate large scale analysis, a finite element model constructed by the finite element analysis program ABAQUS is verified against experimental results. The evaluation of the stress at the partial penetration welded corner is carried out following an empirical procedure, which is adopted due to the complexity of the problem domain. The adopted procedure consists of two steps: the first one is to initially evaluate the stress based on an existing method in the literature, and the second one is to fit the results of the initial evaluation with the finite element model results based on parametric and regression analysis. After performing regression analysis, a formula to predict the weld stress is concluded, and the results of the proposed equation are found to be satisfactory when compared with the finite element model results. Full article
Show Figures

Figure 1

Back to TopTop