Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (91)

Search Parameters:
Keywords = electromagnetic acoustic transducers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3864 KiB  
Article
Sub-MHz EMAR for Non-Contact Thickness Measurement: How Ultrasonic Wave Directivity Affects Accuracy
by Alexander Siegl, David Auer, Bernhard Schweighofer, Andre Hochfellner, Gerald Klösch and Hannes Wegleiter
Sensors 2025, 25(15), 4746; https://doi.org/10.3390/s25154746 - 1 Aug 2025
Viewed by 266
Abstract
Electromagnetic acoustic resonance (EMAR) is a well-established non-contact method for ultrasonic thickness measurement, typically operated at frequencies above 1 MHz using an electromagnetic acoustic transducer (EMAT). This study successfully extends EMAR into the sub-MHz range, allowing supply voltages below 60 V and thus [...] Read more.
Electromagnetic acoustic resonance (EMAR) is a well-established non-contact method for ultrasonic thickness measurement, typically operated at frequencies above 1 MHz using an electromagnetic acoustic transducer (EMAT). This study successfully extends EMAR into the sub-MHz range, allowing supply voltages below 60 V and thus offering safer and more cost-effective operation. Experiments were conducted on copper blocks approximately 20 mm thick, where a relative thickness accuracy of better than 0.2% is obtained. Regarding this result, the research identifies a critical design principle: Stable thickness resonances and subsequently accurate thickness measurement are achieved when the ratio of ultrasonic wavelength to EMAT track width (λ/w) falls below 1. This minimizes the excitation and interactions with structural eigenmodes, ensuring consistent measurement reliability. To support this, the study introduces a system-based model to simulate the EMAR method. The model provides detailed insights into how wave propagation affects the accuracy of EMAR measurements. Experimental results align well with the simulation outcome and confirm the feasibility of EMAR in the sub-MHz regime without compromising precision. These findings highlight the potential of low-voltage EMAR as a safer, cost-effective, and highly accurate approach for industrial ultrasonic thickness measurements. Full article
(This article belongs to the Special Issue Electromagnetic Sensing and Its Applications)
Show Figures

Figure 1

16 pages, 2473 KiB  
Article
Improvement of EMAT Butterfly Coil for Defect Detection in Aluminum Alloy Plate
by Dazhao Chi, Guangyu Sun and Haichun Liu
Materials 2025, 18(13), 3207; https://doi.org/10.3390/ma18133207 - 7 Jul 2025
Viewed by 322
Abstract
For non-destructive testing (NDT) of defects in aluminum alloy plates, traditional ultrasonic contact methods face challenges from high temperatures and liquid couplant contamination. Using electromagnetic acoustic transducers (EMATs), a key issue is that longitudinal waves (L-waves) excited by the butterfly-coil EMATs interfere with [...] Read more.
For non-destructive testing (NDT) of defects in aluminum alloy plates, traditional ultrasonic contact methods face challenges from high temperatures and liquid couplant contamination. Using electromagnetic acoustic transducers (EMATs), a key issue is that longitudinal waves (L-waves) excited by the butterfly-coil EMATs interfere with the desired shear waves (S-waves) reflected by internal defects. To solve this problem, a simulation–experiment approach optimized the butterfly coil parameters. An FE model visualized the electromagnetic acoustic transducer (EMAT) acoustic field and predicted signals. Orthogonal simulations tested three main parameters: excitation frequency, wire diameter, and effective coil width. Tests on aluminum specimens with artificial defects used the optimized EMAT. Simulated and measured signals showed strong correlation, validating optimal parameters. The results confirmed suppressed L-wave interference and improved defect detection sensitivity, enabling detection of a 3 mm diameter flat-bottomed hole buried 37 mm deep. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

16 pages, 5373 KiB  
Article
Design and Development of an Electronic Interface for Acquiring Signals from a Piezoelectric Sensor for Ultrasound Imaging Applications
by Elizabeth Espitia-Romero, Adriana Guzmán-López, Micael Gerardo Bravo-Sánchez, Juan José Martínez-Nolasco, José Alfredo Padilla Medina and Francisco Villaseñor-Ortega
Technologies 2025, 13(7), 270; https://doi.org/10.3390/technologies13070270 - 25 Jun 2025
Viewed by 1308
Abstract
The increasing demand for accurate and accessible medical imaging has driven efforts to develop technologies that overcome limitations associated with conventional imaging techniques, such as MRI and CT scans. This study presents the design and implementation of an electronic interface for acquiring signals [...] Read more.
The increasing demand for accurate and accessible medical imaging has driven efforts to develop technologies that overcome limitations associated with conventional imaging techniques, such as MRI and CT scans. This study presents the design and implementation of an electronic interface for acquiring signals from a piezoelectric ultrasound sensor with the aim of improving image reconstruction quality by addressing electromagnetic interference and speckle noise, two major factors that degrade image fidelity. The proposed interface is installed between the ultrasound transducer and acquisition system, allowing real-time signal capture without altering the medical equipment’s operation. Using a printed circuit board with 110-pin connectors, signals from individual piezoelectric elements were analyzed using an oscilloscope. Results show that noise amplitudes occasionally exceed those of the acoustic echoes, potentially compromising image quality. By enabling direct observation of these signals, the interface facilitates the future development of analog filtering solutions to mitigate high-frequency noise before digital processing. This approach reduces reliance on computationally expensive digital filtering, offering a low-cost, real-time alternative. The findings underscore the potential of the interface to enhance diagnostic accuracy and support further innovation in medical imaging technologies. Full article
(This article belongs to the Special Issue Image Analysis and Processing)
Show Figures

Graphical abstract

12 pages, 1196 KiB  
Hypothesis
Exploring a Novel Hypothesis: Could the Eye Function as a Radar or Ultrasound Device in Depth and Distance Perception? Neurophysiological Insights
by Hüseyin Findik, Muhammet Kaim, Feyzahan Uzun, Ayhan Kanat, Osman Nuri Keleş and Mehmet Dumlu Aydin
Life 2025, 15(4), 536; https://doi.org/10.3390/life15040536 - 25 Mar 2025
Viewed by 688
Abstract
Recent advancements in ocular physiology suggest that the eyes may function similarly to radar antennae or ultrasound probes, with the occipital cortex acting as a detector, challenging the traditional view of binocular vision as the primary mechanism for depth and distance perception. Methods: [...] Read more.
Recent advancements in ocular physiology suggest that the eyes may function similarly to radar antennae or ultrasound probes, with the occipital cortex acting as a detector, challenging the traditional view of binocular vision as the primary mechanism for depth and distance perception. Methods: We conducted a comprehensive analysis of the neuroanatomical and histological architecture of the neuro-optico-cortical systems in a male wild rabbit model. The objective was to identify potential structural and functional similarities between the retino-optical system and radar/ultrasound effector-detector systems. Results: Histological examination revealed significant similarities between retinal morphology and radar/ultrasound systems. The outermost retinal layer resembled an acoustic lens, with underlying layers functioning as acoustic matching layers. The ganglion cell layer exhibited characteristics akin to the piezoelectric elements of transducers. Conclusions: Our findings support the hypothesis that the retinal apparatus functions similarly to radar antennae or ultrasound probes. Light-stimulated retinal-occipital cortex cells perceive objects and emit electromagnetic waves through the retina, which are reflected by objects and processed in the occipital cortex to provide information on their distance, shape, and depth. This mechanism may complement binocular vision and enhance depth and distance perception in the visual system. These results open new avenues for research in visual neuroscience and could have implications for understanding various visual phenomena and disorders. Full article
(This article belongs to the Special Issue Vision Science and Optometry)
Show Figures

Figure 1

24 pages, 10912 KiB  
Article
Research on a High-Temperature Electromagnetic Ultrasonic Circumferential Guided Wave Sensor Based on Halbach Array
by Yuanxin Li, Jinjie Zhou, Jiabo Wen, Zehao Wang and Liu Li
Micromachines 2025, 16(4), 367; https://doi.org/10.3390/mi16040367 - 24 Mar 2025
Cited by 1 | Viewed by 531
Abstract
High-temperature pipelines, as core facilities in the fields of petrochemical and power, are constantly exposed to extreme working conditions ranging from 450 to 600 °C, facing risks of stress corrosion, creep damage, and other defects. Traditional shutdown inspections are time-consuming and costly. Meanwhile, [...] Read more.
High-temperature pipelines, as core facilities in the fields of petrochemical and power, are constantly exposed to extreme working conditions ranging from 450 to 600 °C, facing risks of stress corrosion, creep damage, and other defects. Traditional shutdown inspections are time-consuming and costly. Meanwhile, existing electromagnetic acoustic transducers (EMATs) are restricted by their high-temperature tolerance (≤500 °C) and short-term stability (effective working duration < 5 min). This paper proposes a high-frequency circumferential guided wave (CLamb wave) EMAT based on a Halbach permanent magnet array. Through magnetic circuit optimization (Halbach array) and multi-layer insulation design, it enables continuous and stable detection on the surface of 600 °C pipelines for 10 min. The simulations revealed that the Halbach array increased the magnetic flux density by 1.4 times and the total displacement amplitude by 2 times at a magnet’s large lift-off (9 mm). The experimental results show that the internal temperature of the sensor remained stable below 167 °C at 600 °C. It was capable of detecting the smallest defect of a φ3 mm half-hole (depth half of the wall thickness), with a signal attenuation rate of only 0.32%/min. The signal amplitude of Q235 pipelines under high-temperature short-term detection (<5 min) was 1.5 times higher than that at room temperature. However, material degradation under high temperature led to insufficient long-term stability. This study breaks through the bottleneck of long-term detection of high-temperature EMATs, providing a new scheme for efficient online detection of high-temperature pipelines. Full article
(This article belongs to the Special Issue Acoustic Transducers and Their Applications, 2nd Edition)
Show Figures

Figure 1

14 pages, 12613 KiB  
Communication
Deploying an Integrated Fiber Optic Sensing System for Seismo-Acoustic Monitoring: A Two-Year Continuous Field Trial in Xinfengjiang
by Siyuan Cang, Min Xu, Jiantong Chen, Chao Li, Kan Gao, Xingda Jiang, Zhaoyong Wang, Bin Luo, Zhuo Xiao, Zhen Guo, Ying Chen, Qing Ye and Huayong Yang
J. Mar. Sci. Eng. 2025, 13(2), 368; https://doi.org/10.3390/jmse13020368 - 17 Feb 2025
Viewed by 1266
Abstract
Distributed Acoustic Sensing (DAS) offers numerous advantages, including resistance to electromagnetic interference, long-range dynamic monitoring, dense spatial sensing, and low deployment costs. We initially deployed a water–land DAS system at the Xinfengjiang (XFJ) Reservoir in Guangdong Province, China, to monitor earthquake events. Environmental [...] Read more.
Distributed Acoustic Sensing (DAS) offers numerous advantages, including resistance to electromagnetic interference, long-range dynamic monitoring, dense spatial sensing, and low deployment costs. We initially deployed a water–land DAS system at the Xinfengjiang (XFJ) Reservoir in Guangdong Province, China, to monitor earthquake events. Environmental noise analysis identified three distinct noise zones based on deployment conditions: periodic 18 Hz signals near surface-laid segments, attenuated low-frequency signals (<10 Hz) in the buried terrestrial sections, and elevated noise at transition zones due to water–cable interactions. The system successfully detected hundreds of teleseismic and regional earthquakes, including a Mw7.3 earthquake in Hualien and a local ML0.5 microseismic event. One year later, the DAS system was upgraded with two types of spiral sensor cables at the end of the submarine cable, extending the total length to 5.51 km. The results of detecting both active (transducer) and passive sources (cooperative vessels) highlight the potential of integrating DAS interrogators with spiral sensor cables for the accurate tracking of underwater moving targets. This field trial demonstrates that DAS technology holds promise for the integrated joint monitoring of underwater acoustics and seismic signals beneath lake or ocean bottoms. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

13 pages, 2577 KiB  
Article
High-Performance Acoustic Transducers with Exfoliated NbSe2 Nanosheets and Hybrid Force Mechanisms
by Dong-Kwan Lee, Won-Jin Kim, Kun-Woo Nam and Sung-Hoon Park
Materials 2025, 18(4), 763; https://doi.org/10.3390/ma18040763 - 9 Feb 2025
Viewed by 981
Abstract
The transition metal dichalcogenide (TMDC) NbSe2 is a highly conductive and superconducting material with great potential for next-generation electronic and optoelectronic devices. However, its bulk form suffers from reduced charge density and conductivity due to interlayer van der Waals interactions. To address [...] Read more.
The transition metal dichalcogenide (TMDC) NbSe2 is a highly conductive and superconducting material with great potential for next-generation electronic and optoelectronic devices. However, its bulk form suffers from reduced charge density and conductivity due to interlayer van der Waals interactions. To address this, we exfoliated NbSe₂ into nanosheets using lithium-ion intercalation and utilized them as diaphragms in acoustic transducers. Conventional electromagnetic and electrostatic mechanisms have limitations in sound pressure level (SPL) performance at high and low frequencies, respectively. To overcome this, we developed a hybrid force mechanism combining the strengths of both approaches. The NbSe₂ nanosheets were successfully prepared and analyzed, and the NbSe2-based hybrid acoustic transducer (N-HAT) demonstrated significantly improved SPL performance across a wide frequency range. This study offers a novel approach for designing high-performance acoustic devices by harnessing the unique properties of NbSe2. Full article
Show Figures

Figure 1

22 pages, 2326 KiB  
Review
Basic Theory and Applications of Oil and Gas Pipeline Non-Destructive Testing Methods
by Yuqin Wang, Fei Song, Qingshan Feng, Weibiao Qiao, Shaohua Dong, Yangyang Jiang and Qianli Ma
Energies 2024, 17(24), 6366; https://doi.org/10.3390/en17246366 - 18 Dec 2024
Cited by 3 | Viewed by 1883
Abstract
In recent years, with the increasing construction mileage of oil and gas pipelines (OGPs), the aging problem of OGPs has become increasingly prominent, so, ensuring the safety of OGPs is of great significance. In addition, the safety of OGP transportation is also an [...] Read more.
In recent years, with the increasing construction mileage of oil and gas pipelines (OGPs), the aging problem of OGPs has become increasingly prominent, so, ensuring the safety of OGPs is of great significance. In addition, the safety of OGP transportation is also an important component of pipeline integrity. Therefore, to ensure the safety of OGP transportation, regular OGP inspections should be carried out. During this process, defects in the OGP and measured wall thickness information should be recorded to provide a basis for subsequent pipeline repair or replacement. This study analyzes the literature on pipeline testing and reviews approximately eighty articles. Based on these articles, we summarize the types of common OGP defects and review the basic principles of various non-destructive testing methods for pipelines, including electromagnetic acoustic transducer inspection, magnetic flux leakage testing, ultrasonic testing, and eddy current testing. We also provide a detailed introduction to the applications and innovative testing methods based on the above OGP inspection methods. Finally, an analysis and outlook on the future research focus of OGP inspection technology are presented. This research suggests that different detection methods should be used for different types of defects, such as using the magnetic leakage method for the internal detection of natural gas pipelines. Full article
(This article belongs to the Topic Oil and Gas Pipeline Network for Industrial Applications)
Show Figures

Figure 1

23 pages, 2249 KiB  
Article
Improved EMAT Sensor Design for Enhanced Ultrasonic Signal Detection in Steel Wire Ropes
by Immanuel Rossteutscher, Oliver Blaschke, Florian Dötzer, Thorsten Uphues and Klaus Stefan Drese
Sensors 2024, 24(22), 7114; https://doi.org/10.3390/s24227114 - 5 Nov 2024
Cited by 2 | Viewed by 1667
Abstract
This study is focused on optimizing electromagnetic acoustic transducer (EMAT) sensors for enhanced ultrasonic guided wave signal generation in steel cables using CAD and modern manufacturing to enable contactless ultrasonic signal transmission and reception. A lab test rig with advanced measurement and data [...] Read more.
This study is focused on optimizing electromagnetic acoustic transducer (EMAT) sensors for enhanced ultrasonic guided wave signal generation in steel cables using CAD and modern manufacturing to enable contactless ultrasonic signal transmission and reception. A lab test rig with advanced measurement and data processing was set up to test the sensors’ ability to detect cable damage, like wire breaks and abrasion, while also examining the effect of potential disruptors such as rope soiling. Machine learning algorithms were applied to improve the damage detection accuracy, leading to significant advancements in magnetostrictive measurement methods and providing a new standard for future development in this area. The use of the Vision Transformer Masked Autoencoder Architecture (ViTMAE) and generative pre-training has shown that reliable damage detection is possible despite the considerable signal fluctuations caused by rope movement. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2024)
Show Figures

Figure 1

17 pages, 8185 KiB  
Article
Debonding Detection of Thin-Walled Adhesive Structure by Electromagnetic Acoustic Resonance Technology
by Ne Liu, Shiqiang Shen, Ying Zhu, Ying Gao and Yongdong Pan
Materials 2024, 17(20), 5073; https://doi.org/10.3390/ma17205073 - 17 Oct 2024
Viewed by 1108
Abstract
The detection of debonding defects in thin-walled adhesive structures, such as clad-iron/rubber layers on the leading edges of helicopter blades, presents significant challenges. This paper proposes the application of electromagnetic acoustic resonance technology (EMAR) to identify these defects in thin-walled adhesive structures. Through [...] Read more.
The detection of debonding defects in thin-walled adhesive structures, such as clad-iron/rubber layers on the leading edges of helicopter blades, presents significant challenges. This paper proposes the application of electromagnetic acoustic resonance technology (EMAR) to identify these defects in thin-walled adhesive structures. Through theoretical and simulation studies, the frequency spectrum of ultrasonic vibrations in thin-walled adhesive structures with various defects was analyzed. These studies verified the feasibility of applying EMAR to identify debonding defects. The identification of debonding defects was further examined, revealing that cling-type debonding defects could be effectively detected using EMAR by exciting shear waves with the minimum defect diameter at 5 mm. Additionally, the method allows for the quantitative analysis of these defects in the test sample. Due to the limited size of the energy exchange region in the transducer, the quantitative error becomes significant when identifying debonding defects smaller than this region. The EMAR identified debonding defects in clad-iron structures of rotor blades with a maximum error of approximately 15%, confirming its effectiveness for inspecting thin-walled adhesive structures. Full article
Show Figures

Figure 1

18 pages, 7017 KiB  
Article
A Universal Model for Ultrasonic Energy Transmission in Various Media
by Yufei Ma, Yunan Jiang and Chong Li
Sensors 2024, 24(19), 6230; https://doi.org/10.3390/s24196230 - 26 Sep 2024
Cited by 1 | Viewed by 1570
Abstract
This study presents a comprehensive model for ultrasonic energy transfer (UET) using a 33-mode piezoelectric transducer to advance wireless sensor powering in challenging environments. One of the advantages of UET is that it is not stoppable by electromagnetic shielding and can penetrate metal. [...] Read more.
This study presents a comprehensive model for ultrasonic energy transfer (UET) using a 33-mode piezoelectric transducer to advance wireless sensor powering in challenging environments. One of the advantages of UET is that it is not stoppable by electromagnetic shielding and can penetrate metal. Existing models focus on feasibility and numerical analysis but lack an effective link between input and output power in different media applications. The proposed model fills this gap by incorporating key factors of link loss, including resonant frequency, impedance matching, acoustic coupling, and boundary conditions, to predict energy transfer efficiency more accurately. The model is validated through numerical simulations and experimental tests in air, metal, and underwater environments. An error analysis has shown that the maximum error between theoretical and experimental responses is 3.11% (air), 27.37% (water), and 1.76% (aluminum). This research provides valuable insights into UET dynamics and offers practical guidelines for developing efficient wireless powering solutions for sensors in difficult-to-access or electromagnetically shielded conditions. Full article
(This article belongs to the Topic Advanced Wireless Charging Technology)
Show Figures

Figure 1

25 pages, 10965 KiB  
Article
Bottom Crack Detection with Real-Time Signal Amplitude Correction Using EMAT-PEC Composite Sensor
by Yizhou Guo, Yu Hu, Kai Wang, Yini Song, Bo Feng, Yihua Kang and Zhaoqi Duan
Sensors 2024, 24(16), 5196; https://doi.org/10.3390/s24165196 - 11 Aug 2024
Cited by 4 | Viewed by 1878
Abstract
During electromagnetic ultrasonic testing, it is difficult to recognize small-size bottom cracks by time of flight (ToF), and the lift-off fluctuation of the probe affects the accuracy and consistency of the inspection results. In order to overcome the difficulty, a novel composite sensor [...] Read more.
During electromagnetic ultrasonic testing, it is difficult to recognize small-size bottom cracks by time of flight (ToF), and the lift-off fluctuation of the probe affects the accuracy and consistency of the inspection results. In order to overcome the difficulty, a novel composite sensor of an electromagnetic acoustic transducer (EMAT) and pulse eddy current (PEC) is designed. We use the amplitude of a bottom echo recorded by EMAT to identify the tiny bottom crack as well as the amplitude of PEC signals picked up by the integrated symmetric coils to measure the average lift-off of the probe in real time. Firstly, the effects of lift-off and bottom cracks on the amplitude of bottom echo are distinguished by combining the theoretical analysis and finite element method (FEM). And then an amplitude correction method based on the fusion of EMAT and PEC signals is proposed to reduce the impact of lift-off on the defect signal. The experimental results demonstrate that the designed composite sensor can effectively detect a bottom crack as small as 0.1 mm × 0.3 mm. The signal fusion method can accurately correct the amplitude of defect signals and the relative error is less than ±8%. Full article
(This article belongs to the Special Issue Novel Sensors for Structural Health Monitoring: 2nd Edition)
Show Figures

Figure 1

21 pages, 4988 KiB  
Article
An Adaptive Noise Reduction Method for High Temperature and Low Voltage Electromagnetic Detection Signals Based on SVMD Combined with ICEEMDAN
by Zhizeng Ge, Jinjie Zhou, Xingquan Shen, Xingjun Zhang and Caixia Qi
Micromachines 2024, 15(8), 977; https://doi.org/10.3390/mi15080977 - 30 Jul 2024
Cited by 1 | Viewed by 1386
Abstract
In view of the low signal-to-noise ratio (SNR) of shear wave electromagnetic acoustic transducers (EMAT) in the detection of high-temperature equipment, the use of low excitation voltage (LEV) further deteriorates the detection results, resulting in the echo signal containing defects being drowned in [...] Read more.
In view of the low signal-to-noise ratio (SNR) of shear wave electromagnetic acoustic transducers (EMAT) in the detection of high-temperature equipment, the use of low excitation voltage (LEV) further deteriorates the detection results, resulting in the echo signal containing defects being drowned in noise. For the extraction of the EMAT signal, an adaptive noise reduction method is proposed. Firstly, the minimum envelope entropy is taken as the fitness function for the Harris Hawks Optimizer (HHO), and the optimal successive variational mode decomposition (SVMD) balance parameter is searched by HHO adaptive iteration to decompose LEV EMAT signals at high temperatures. Then the filter is carried out according to the excitation center frequency and correlation coefficient threshold function. Then, improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) is used to decompose the filtered signal and combine the kurtosis factor to select the appropriate intrinsic mode functions. Finally, the signal is extracted by the Hilbert transform. In order to verify the effectiveness of the method, it is applied to the low-voltage detection of 40Cr from 25 °C to 700 °C. The results show that the method not only suppresses the background noise and clutter noise but also significantly improves the SNR of EMAT signals, and most importantly, it is able to detect and extract the 2 mm small defects from the echo signals. It has great application prospects and value in the LEV detection of high-temperature equipment. Full article
(This article belongs to the Special Issue Acoustic Transducers and Their Applications, 2nd Edition)
Show Figures

Figure 1

16 pages, 2986 KiB  
Article
Thickness Measurements with EMAT Based on Fuzzy Logic
by Yingjie Shi, Shihui Tian, Jiahong Jiang, Tairan Lei, Shun Wang, Xiaobo Lin and Ke Xu
Sensors 2024, 24(13), 4066; https://doi.org/10.3390/s24134066 - 22 Jun 2024
Cited by 3 | Viewed by 1619
Abstract
Metal thickness measurements are essential in various industrial applications, yet current non-contact ultrasonic methods face limitations in range and accuracy, hindering the widespread adoption of electromagnetic ultrasonics. This study introduces a novel combined thickness measurement method employing fuzzy logic, with the aim of [...] Read more.
Metal thickness measurements are essential in various industrial applications, yet current non-contact ultrasonic methods face limitations in range and accuracy, hindering the widespread adoption of electromagnetic ultrasonics. This study introduces a novel combined thickness measurement method employing fuzzy logic, with the aim of broadening the applicational scope of the EMAT. Leveraging minimal hardware, this method utilizes the short pulse time-of-flight (TOF) technique for initial thickness estimation, followed by secondary measurements guided by fuzzy logic principles. The integration of measurements from the resonance, short pulse echo, and linear frequency modulation echo extends the measurement range while enhancing accuracy. Rigorous experimental validation validates the method’s effectiveness, demonstrating a measurement range of 0.3–1000.0 mm with a median error within ±0.5 mm. Outperforming traditional methods like short pulse echoes, this approach holds significant industrial potential. Full article
(This article belongs to the Special Issue Electromagnetic Sensing and Its Applications)
Show Figures

Figure 1

19 pages, 7240 KiB  
Article
Rail Flaw Detection via Kolmogorov Entropy of Chaotic Oscillator Based on Ultrasonic Guided Waves
by Ziyan Zeng, Jing Wu, Mingfang Zheng and Hongwei Ma
Sensors 2024, 24(9), 2730; https://doi.org/10.3390/s24092730 - 25 Apr 2024
Cited by 2 | Viewed by 1341
Abstract
Ultrasonic guided wave (UGW) inspection is an emerging non-destructive testing(NDT) technique for rail flaw detection, where weak UGW signals under strong noise backgrounds are difficult to detect. In this study, a UGW signal identification model based on a chaotic oscillator is established. The [...] Read more.
Ultrasonic guided wave (UGW) inspection is an emerging non-destructive testing(NDT) technique for rail flaw detection, where weak UGW signals under strong noise backgrounds are difficult to detect. In this study, a UGW signal identification model based on a chaotic oscillator is established. The approach integrates the UGW response into the critical state of the Duffing system to serve as a disturbance control variable. By evaluating the system’s motion state before and after introducing the UGW response, identification of UGW signals can be realized. Thus, the parameters defining the critical state of Duffing oscillators are determined by Ke. Moreover, an electromagnetic transducer was specifically devised to enable unidirectional excitation for UGWs targeted at both the rail base and rail head. Experimental studies showed that the proposed methodology effectively detected and located a 0.46 mm notch at the rail base and a 1.78 mm notch at the rail head. Furthermore, Ke was directly proportional to the notch size, which could be used as a quantitative index to characterize the rail flaw. Full article
(This article belongs to the Special Issue Acoustic and Ultrasonic Sensing Technology in Non-Destructive Testing)
Show Figures

Figure 1

Back to TopTop