Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = electro-hydraulic hitch system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 9759 KiB  
Article
Design and Test of a Tractor Electro-Hydraulic-Suspension Tillage-Depth and Loading-Control System Test Bench
by Xiaoxu Sun, Yue Song, Yunfei Wang, Jin Qian, Zhixiong Lu and Tao Wang
Agriculture 2023, 13(10), 1884; https://doi.org/10.3390/agriculture13101884 - 27 Sep 2023
Cited by 6 | Viewed by 2661
Abstract
Electro-hydraulic suspension systems are one of the key working systems of tractors. Due to the complex and changeable working conditions in the field, it is of great significance to shorten the development cycle of the control strategy and reduce the development cost by [...] Read more.
Electro-hydraulic suspension systems are one of the key working systems of tractors. Due to the complex and changeable working conditions in the field, it is of great significance to shorten the development cycle of the control strategy and reduce the development cost by using the indoor bench for test verification at the beginning of the study. Based on this, this paper has proposed a complete set of tractor hydraulic-suspension tillage-depth and loading-control test-bench designs. The system was mainly composed of three parts: an industrial computer, a suspension electro-hydraulic control system, and a loading electro-hydraulic control and data-acquisition system. The human–computer interaction interface of the test-bench measurement and control system was built, and the loading-force control system and suspension tillage-depth and loading integrated-control system were built based on PID and fuzzy PID control algorithms, respectively. The system can realize the control of suspension tillage depth and loading during the operation process and has the functions of the real-time acquisition, display, and data storage of related sensor signals during the working process. The test results showed that the response time of the loading-control system was less than 1.2 s, and the maximum steady-state error was less than 0.8%. The response time of the suspension control system was less than 2.3 s, and the maximum steady-state error was less than 1%. The system has good responsiveness and stability. These research results can provide platform and method of support for the development and test of tractor electro-hydraulic suspension systems. Full article
(This article belongs to the Special Issue Agricultural Machinery Design and Agricultural Engineering)
Show Figures

Figure 1

18 pages, 8284 KiB  
Article
Research on a Hydraulic Cylinder Pressure Control Method for Efficient Traction Operation in Electro-Hydraulic Hitch System of Electric Tractors
by Zhenhao Luo, Jihang Wang, Jing Wu, Shengli Zhang, Zhongju Chen and Bin Xie
Agriculture 2023, 13(8), 1555; https://doi.org/10.3390/agriculture13081555 - 3 Aug 2023
Cited by 9 | Viewed by 2447
Abstract
The tractor is the primary power device of the agricultural production process. For the problem that the traditional electro-hydraulic hitch control method for tractors cannot simultaneously meet the requirements of maintaining a constant ploughing depth and improving traction performance and electric tractor overall [...] Read more.
The tractor is the primary power device of the agricultural production process. For the problem that the traditional electro-hydraulic hitch control method for tractors cannot simultaneously meet the requirements of maintaining a constant ploughing depth and improving traction performance and electric tractor overall efficiency, this paper proposes a hydraulic cylinder pressure control method of the electro-hydraulic hitch system for electric tractors. We establish a tractor-implement system dynamic model, calculate the rear axle load of the tractor in real-time according to the actual working parameters under the premise of ensuring the constant ploughing depth, construct a traction performance objective optimization function, and use the genetic algorithm to solve the optimal hydraulic cylinder pressure value of the electro-hydraulic hitch system. Hardware-in-the-loop (HIL) simulation results show that the electric tractor under the traditional position control method and the hydraulic cylinder pressure control method has an average wheel slip of 18.50% and 16.93%, an average traction efficiency of 71.35% and 73.08%, and an average overall efficiency of 50.81% and 52.40%. The hydraulic cylinder pressure control method proposed in this paper reduces the wheel slip by 9.27%, increases the traction efficiency by 2.42%, improves the electric tractor overall efficiency by 3.13%, and reduces the electric tractor overall energy loss by 7.67% compared with the traditional position-control method. Therefore, the hydraulic cylinder pressure control method of the electro-hydraulic hitch system proposed in this paper can achieve the purpose of effectively improving tractor traction performance and reducing tractor energy loss while maintaining a constant ploughing depth. This study offers technological references for electric tractors to improve traction performance and reduce the overall energy loss of electric tractors. Full article
(This article belongs to the Special Issue Application of Modern Agricultural Equipment in Crop Cultivation)
Show Figures

Figure 1

20 pages, 2764 KiB  
Review
Development Status and Research Progress of a Tractor Electro-Hydraulic Hitch System
by Xiaoxu Sun, Zhixiong Lu, Yue Song, Zhun Cheng, Chunxia Jiang, Jin Qian and Yang Lu
Agriculture 2022, 12(10), 1547; https://doi.org/10.3390/agriculture12101547 - 25 Sep 2022
Cited by 8 | Viewed by 6161
Abstract
A tractor electro-hydraulic hitch system is considered one of the most important systems that play a strategic role in the power transmission and operation depth control of a tractor’s field operation. Its performance directly affects the operation quality of the whole work unit [...] Read more.
A tractor electro-hydraulic hitch system is considered one of the most important systems that play a strategic role in the power transmission and operation depth control of a tractor’s field operation. Its performance directly affects the operation quality of the whole work unit of the tractor. Furthermore, a tractor electro-hydraulic hitch system has gained the interest of many in the agricultural machinery sector because of its stable performance, high production efficiency, good operation quality and its low energy consumption. To fully benefit from the potential of the tractor electro-hydraulic hitch system, it is significant to understand and address the problems and challenges associated with it. This study, therefore, aims to contribute to the development of the tractor electro-hydraulic hitch system by investigating the research methods, technical characteristics and emerging trends in three key aspects that include the tillage depth adjustment method, the tillage depth control algorithm and the core components of the electro-hydraulic hitch system. The characteristics and applicable conditions of the different tillage depth adjustment methods of the electro-hydraulic hitch system were summarized. The realization methods and the control characteristics of the different algorithms were elaborated and discussed for both the PID control algorithm and the intelligent control algorithm. The working characteristics of the core components of the electro-hydraulic hitch system were analyzed based on the hydraulic control valves and sensing elements. The results have shown that the multi-parameter tillage depth adjustment method met the operation quality standard while taking the engine load stability and traction efficiency into account, and it has a greater research significance and value. The working quality can be improved effectively by introducing the intelligent algorithm. In addition, the study of smart valves with built-in sensing elements and how to improve the anti-interference ability of sensing elements, are the aspects that requires further consideration. Aiming to improve the working quality and reduce energy consumption, further research into the tractor electro-hydraulic hitch system is necessary. The results of this comprehensive review provide a reference for the intelligent operation of tractors under the precision agriculture. Full article
(This article belongs to the Special Issue Advances in Agricultural Engineering Technologies and Application)
Show Figures

Figure 1

13 pages, 2819 KiB  
Article
Research on Variable-Universe Fuzzy Control Technology of an Electro-Hydraulic Hitch System
by Jikang Xu, Ruichuan Li, Yanchao Li, Yisheng Zhang, Huilai Sun, Xinkai Ding and Yong Ma
Processes 2021, 9(11), 1920; https://doi.org/10.3390/pr9111920 - 27 Oct 2021
Cited by 11 | Viewed by 2471
Abstract
To improve the quality and control accuracy of the farming tractor electro-hydraulic hitch system, a variable-universe fuzzy control algorithm is introduced herein based on force–position mixed adjustment. (1) Background: This research sought to improve the operation quality and control precision of the tractor [...] Read more.
To improve the quality and control accuracy of the farming tractor electro-hydraulic hitch system, a variable-universe fuzzy control algorithm is introduced herein based on force–position mixed adjustment. (1) Background: This research sought to improve the operation quality and control precision of the tractor electro-hydraulic suspension operation system by solving the slow response and low precision problems in the target value control of the system. (2) Methods: According to the characteristics of the operating system, the working principle is discussed. The variable-universe fuzzy controller and the control module were designed based on MC9S12XS128. At the same time, we used Matlab/Simulink to study the step response, and field tests were carried out based on the existing test conditions. (3) Results: In the response stage, the variable-universe fuzzy control only needs 5.85 s, and there is no overshoot problem; in the normal tillage stage, the maximum tillage depth difference is only 1.6 cm, and the traction force is 428 N, which is closer to the expected value. (4) Conclusions: The farming quality and efficiency of the operating system were improved. Additionally, the operating system can also provide technical support for intelligent agricultural machinery and the field management mode in the future. Full article
(This article belongs to the Special Issue Synergies in Combined Development of Processes and Models)
Show Figures

Figure 1

Back to TopTop