Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = effector–immunity pairs (E–I pairs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2936 KiB  
Article
An Orphan VrgG Auxiliary Module Related to the Type VI Secretion Systems from Pseudomonas ogarae F113 Mediates Bacterial Killing
by David Durán, David Vazquez-Arias, Esther Blanco-Romero, Daniel Garrido-Sanz, Miguel Redondo-Nieto, Rafael Rivilla and Marta Martín
Genes 2023, 14(11), 1979; https://doi.org/10.3390/genes14111979 - 24 Oct 2023
Cited by 3 | Viewed by 2038
Abstract
The model rhizobacterium Pseudomonas ogarae F113, a relevant plant growth-promoting bacterium, encodes three different Type VI secretion systems (T6SS) in its genome. In silico analysis of its genome revealed the presence of a genetic auxiliary module containing a gene encoding an orphan VgrG protein [...] Read more.
The model rhizobacterium Pseudomonas ogarae F113, a relevant plant growth-promoting bacterium, encodes three different Type VI secretion systems (T6SS) in its genome. In silico analysis of its genome revealed the presence of a genetic auxiliary module containing a gene encoding an orphan VgrG protein (VgrG5a) that is not genetically linked to any T6SS structural cluster, but is associated with genes encoding putative T6SS-related proteins: a possible adaptor Tap protein, followed by a putative effector, Tfe8, and its putative cognate immunity protein, Tfi8. The bioinformatic analysis of the VgrG5a auxiliary module has revealed that this cluster is only present in several subgroups of the P. fluorescens complex of species. An analysis of the mutants affecting the vgrG5a and tfe8 genes has shown that the module is involved in bacterial killing. To test whether Tfe8/Tfi8 constitute an effector–immunity pair, the genes encoding Tfe8 and Tfi8 were cloned and expressed in E. coli, showing that the ectopic expression of tfe8 affected growth. The growth defect was suppressed by tfi8 ectopic expression. These results indicate that Tfe8 is a bacterial killing effector, while Tfi8 is its cognate immunity protein. The Tfe8 protein sequence presents homology to the proteins of the MATE family involved in drug extrusion. The Tfe8 effector is a membrane protein with 10 to 12 transmembrane domains that could destabilize the membranes of target cells by the formation of pores, revealing the importance of these effectors for bacterial interaction. Tfe8 represents a novel type of a T6SS effector present in pseudomonads. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

19 pages, 4078 KiB  
Article
The T6SS-Dependent Effector Re78 of Rhizobium etli Mim1 Benefits Bacterial Competition
by Bruna Fernanda Silva De Sousa, Lucía Domingo-Serrano, Alvaro Salinero-Lanzarote, José Manuel Palacios and Luis Rey
Biology 2023, 12(5), 678; https://doi.org/10.3390/biology12050678 - 4 May 2023
Cited by 6 | Viewed by 3982
Abstract
The genes of the type VI secretion system (T6SS) from Rhizobium etli Mim1 (ReMim1) that contain possible effectors can be divided into three modules. The mutants in them indicated that they are not required for effective nodulation with beans. To analyze T6SS expression, [...] Read more.
The genes of the type VI secretion system (T6SS) from Rhizobium etli Mim1 (ReMim1) that contain possible effectors can be divided into three modules. The mutants in them indicated that they are not required for effective nodulation with beans. To analyze T6SS expression, a putative promoter region between the tssA and tssH genes was fused in both orientations to a reporter gene. Both fusions are expressed more in free living than in symbiosis. When the module-specific genes were studied using RT-qPCR, a low expression was observed in free living and in symbiosis, which was clearly lower than the structural genes. The secretion of Re78 protein from the T6SS gene cluster was dependent on the presence of an active T6SS. Furthermore, the expression of Re78 and Re79 proteins in E. coli without the ReMim1 nanosyringe revealed that these proteins behave as a toxic effector/immunity protein pair (E/I). The harmful action of Re78, whose mechanism is still unknown, would take place in the periplasmic space of the target cell. The deletion of this ReMim1 E/I pair resulted in reduced competitiveness for bean nodule occupancy and in lower survival in the presence of the wild-type strain. Full article
Show Figures

Graphical abstract

11 pages, 320 KiB  
Hypothesis
The Acari Hypothesis, III: Atopic Dermatitis
by Andrew C. Retzinger and Gregory S. Retzinger
Pathogens 2022, 11(10), 1083; https://doi.org/10.3390/pathogens11101083 - 23 Sep 2022
Cited by 5 | Viewed by 3572
Abstract
Atopic dermatitis is a chronic relapsing dermatopathology involving IgE against allergenic materials present on mammalian epithelial surfaces. Allergens are as diverse as pet danders, and polypeptides expressed by microbes of the mammalian microbiome, e.g., Malassezia spp. The Acari Hypothesis posits that the mammalian [...] Read more.
Atopic dermatitis is a chronic relapsing dermatopathology involving IgE against allergenic materials present on mammalian epithelial surfaces. Allergens are as diverse as pet danders, and polypeptides expressed by microbes of the mammalian microbiome, e.g., Malassezia spp. The Acari Hypothesis posits that the mammalian innate immune system utilizes pathogen-bound acarian immune effectors to protect against the vectorial threat posed by mites and ticks. Per The Hypothesis, IgE-mediated allergic disease is a specious consequence of the pairing of acarian gastrointestinal materials, e.g., allergenic foodstuffs, with acarian innate immune effectors that have interspecies operability. In keeping with The Hypothesis, the IgE profile of atopic patients should include both anti-acarian antibodies and specious antibodies responsible for specific allergy. Further, the profile should inform on the diet and/or environment of the acarian vector. In this regard, the prevalence of Demodex and Dermatophagoides on the skin of persons suffering from atopic dermatitis is increased. Importantly, the diets of these mites correspond well with the allergens of affected patients. In this report, roles for these specific acarians in the pathogenesis of atopic dermatitis are proposed and elaborated. Full article
(This article belongs to the Special Issue Immune Response in Parasite Infections)
13 pages, 3150 KiB  
Article
SsPEP1, an Effector with Essential Cellular Functions in Sugarcane Smut Fungus
by Shan Lu, Yukun Wang, Xiaorui Shen, Feng Guo, Chunling Zhou, Ru Li and Baoshan Chen
J. Fungi 2021, 7(11), 954; https://doi.org/10.3390/jof7110954 - 11 Nov 2021
Cited by 10 | Viewed by 2625
Abstract
Biotrophic fungi have to infect their host to obtain nutrients and must establish an interaction with the host to complete their life cycle. In this process, effectors play important roles in manipulating the host’s immune system to avoid being attacked. Sporisorium scitamineum is [...] Read more.
Biotrophic fungi have to infect their host to obtain nutrients and must establish an interaction with the host to complete their life cycle. In this process, effectors play important roles in manipulating the host’s immune system to avoid being attacked. Sporisorium scitamineum is the causative agent of sugarcane smut, the most important disease in sugarcane-producing regions worldwide. In this work, we functionally characterized the conserved effector PEP1 in S. scitamineum. The mating process and the expression of genes in the MAPK signaling pathway and the a and b loci were adversely affected in Sspep1-null mutants. The requirement for SsPEP1 in pathogenicity and symptom development was allele dosage-dependent, i.e., deleting one Sspep1 allele in the mating pair turned a normal black whip with abundant teliospores into a white whip with few teliospores; however, deleting both alleles almost abolished infectivity and whip development. ΔSspep1 mutants produced significantly less mycelium mass within infected plants. Additionally, SsPEP1 was identified as a potent inhibitor of sugarcane POD-1a peroxidase activity, implying that SsPEP1 may function to relieve reactive oxygen species-related stress within the host plant. Taken together, our work demonstrated that SsPEP1 is a multifaceted effector essential for S. scitamineum growth, development, and pathogenicity. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

14 pages, 286 KiB  
Review
Effector–Immunity Pairs Provide the T6SS Nanomachine its Offensive and Defensive Capabilities
by Xiaobing Yang, Mingxiu Long and Xihui Shen
Molecules 2018, 23(5), 1009; https://doi.org/10.3390/molecules23051009 - 26 Apr 2018
Cited by 49 | Viewed by 8097
Abstract
Type VI protein secretion systems (T6SSs) are specialized transport apparatus which can target both eukaryotic and prokaryotic cells and play key roles in host–pathogen–microbiota interactions. Therefore, T6SSs have attracted much attention as a research topic during the past ten years. In this review, [...] Read more.
Type VI protein secretion systems (T6SSs) are specialized transport apparatus which can target both eukaryotic and prokaryotic cells and play key roles in host–pathogen–microbiota interactions. Therefore, T6SSs have attracted much attention as a research topic during the past ten years. In this review, we particularly summarized the T6SS antibacterial function, which involves an interesting offensive and defensive mechanism of the effector–immunity (E–I) pairs. The three main categories of effectors that target the cell wall, membranes, and nucleic acids during bacterial interaction, along with their corresponding immunity proteins are presented. We also discuss structural analyses of several effectors and E–I pairs, which explain the offensive and defensive mechanisms underpinning T6SS function during bacterial competition for niche-space, as well as the bioinformatics, proteomics, and protein–protein interaction (PPI) methods used to identify and characterize T6SS mediated E–I pairs. Additionally, we described PPI methods for verifying E–I pairs. Full article
(This article belongs to the Special Issue Protein-Protein Interactions)
Back to TopTop