Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = ecological Cabernet Sauvignon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3071 KiB  
Article
Xylem Sap Mycobiota in Grapevine Naturally Infected with Xylella fastidiosa: A Case Study: Interaction of Xylella fastidiosa with Sclerotinia sclerotiorum
by Analía Perelló, Antonia Romero-Munar, Sergio I. Martinez, Antonio Busquets, María Cañellas, Bárbara M. Quetglas, Rafael Bosch, Jaume Vadell, Catalina Cabot and Marga Gomila
Plants 2025, 14(13), 1976; https://doi.org/10.3390/plants14131976 - 27 Jun 2025
Viewed by 498
Abstract
Grapevine (Vitis vinifera) is a key crop in Mediterranean agriculture, now increasingly threatened by Xylella fastidiosa subsp. Fastidiosa (Xff), the causal agent of Pierce’s disease. This study investigated: (1) the diversity of culturable fungal endophytes in the xylem sap [...] Read more.
Grapevine (Vitis vinifera) is a key crop in Mediterranean agriculture, now increasingly threatened by Xylella fastidiosa subsp. Fastidiosa (Xff), the causal agent of Pierce’s disease. This study investigated: (1) the diversity of culturable fungal endophytes in the xylem sap of naturally Xff-infected grapevines, and (2) the interaction between Xff and the pathogenic fungus Sclerotinia sclerotiorum identified in the sap. The xylem sap was collected from Cabernet Sauvignon vines in Mallorca, Spain, and fungal communities were characterized using culture-dependent methods. Both beneficial fungi (e.g., Aureobasidium pullulans, Rhodotorula mucilaginosa) and pathogenic species (e.g., S. sclerotiorum, Cladosporium sp., Alternaria alternata, and the Phoma complex) were isolated from both Xff-positive and Xff-negative plants, indicating similar community profiles. Although limited by small sample size, these findings offer preliminary evidence of complex ecological interactions between Xff and the xylem-associated mycobiota, with potential implications for grapevine health and disease development under varying environmental and management conditions. Further experiments under controlled conditions revealed that grapevines co-inoculated with Xff and S. sclerotiorum showed increased disease severity, suggesting a synergistic interaction. These preliminary results highlight the complex interplay between Xff and the fungal endophytic microbiome, which may modulate grapevine susceptibility depending on environmental and management conditions. Full article
Show Figures

Figure 1

15 pages, 929 KiB  
Article
Assessing Wine Grape Cultivar Susceptibility to Spotted Wing Drosophila and Melanogaster-Type Drosophila in Hungarian Vineyards: Effects of Berry Integrity and Insights into Larval Interactions
by Abir Ibn Amor, Ágnes Kukorellyné Szénási, Csaba Németh, Ferenc Deutsch and Balázs Kiss
Insects 2025, 16(5), 497; https://doi.org/10.3390/insects16050497 - 5 May 2025
Viewed by 668
Abstract
The invasive spotted wing Drosophila (SWD) represents new challenges for European and North American fruit producers. The aim of our study was to examine wine grape cultivar susceptibility to this pest and melanogaster-type Drosophila (MTD) by surveying drosophilid populations using field traps and [...] Read more.
The invasive spotted wing Drosophila (SWD) represents new challenges for European and North American fruit producers. The aim of our study was to examine wine grape cultivar susceptibility to this pest and melanogaster-type Drosophila (MTD) by surveying drosophilid populations using field traps and conducting emergence tests. We assessed fly development from intact and artificially injured berries collected from four cultivars. Berries were incubated individually and in pooled samples to evaluate infestation patterns and potential larval interactions. Although grapes are generally considered less favorable hosts for SWD, the pest was consistently present across all vineyard plots. Infestation levels differed significantly among cultivars, with the Hungarian white cultivar Furmint being the most susceptible, while French-origin red cultivars Cabernet Franc and Cabernet Sauvignon, along with the other Hungarian cultivar Rózsakő, were less susceptible. Berry integrity played a crucial role: intact berries showed minimal infestation, whereas physical injuries led to a substantial and significant increase in infestation rates and fly emergence. In contrast to SWD-dominated trap catches and the nearly equal proportions of SWD and MTD observed in intact berries, injured berries were predominantly colonized by MTD. This dominance became even more pronounced in pooled samples, suggesting that larval competition in shared environments favors MTD over SWD. These findings underscore the importance of grape cultivar traits and berry condition in shaping Drosophila infestation dynamics. Further research into the chemical and ecological drivers of host selection and interspecific interactions is warranted to improve vineyard pest management strategies. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

12 pages, 2593 KiB  
Communication
Development of a Process for Polyphenol Extraction and the Production of a Functional Powder for Food Fortification
by Monica Macaluso, Nicola Mercanti, Ylenia Pieracci, Andrea Marianelli, Giulio Scappaticci, Andrea Fratacci, Cristiano Nicolella and Angela Zinnai
Appl. Sci. 2024, 14(22), 10712; https://doi.org/10.3390/app142210712 - 19 Nov 2024
Viewed by 1824
Abstract
The valorisation of co-products from food supply chains is consistent with the objectives of the national recovery and resilience plan (NRRP), which favours issues relating to the “green revolution and ecological transition”. The nutraceutical characteristics (antimicrobial, antiviral, anti-cancer, etc.) of grape pomace extracts [...] Read more.
The valorisation of co-products from food supply chains is consistent with the objectives of the national recovery and resilience plan (NRRP), which favours issues relating to the “green revolution and ecological transition”. The nutraceutical characteristics (antimicrobial, antiviral, anti-cancer, etc.) of grape pomace extracts are due to the presence of polyphenols. The objective of the following research was to develop an innovative extraction process in order to produce a special powder with high technological and nutraceutical value (polyphenols). For the experimentation, red grape pomace from Cabernet Sauvignon grapes was used. The first phase of the experimentation allowed the development of the extraction methods; the second involved the use of a pilot system for the extraction, filtration, and distillation phases. The result obtained is a powder with compositional characteristics suitable for the fortification of alcoholic and non-alcoholic food matrices, due to its colouring and antioxidant and nutraceutical properties. Full article
Show Figures

Figure 1

15 pages, 3226 KiB  
Article
Fungal Community Composition and Its Relationship with Volatile Compounds during Spontaneous Fermentation of Cabernet Sauvignon from Two Chinese Wine-Growing Regions
by Jie Gao, Huiying Geng, Ruru Chai, Tianyang Wu, Weidong Huang, Yilin You and Jicheng Zhan
Foods 2024, 13(1), 106; https://doi.org/10.3390/foods13010106 - 28 Dec 2023
Cited by 4 | Viewed by 1710
Abstract
The microbial community structure associated with wine in a wine-growing region is shaped by diverse ecological factors within that region, profoundly impacting the wine flavor. In wine fermentation, fungi contribute more sensory-active biochemical compounds than bacteria. In this study, we employed amplicon sequencing [...] Read more.
The microbial community structure associated with wine in a wine-growing region is shaped by diverse ecological factors within that region, profoundly impacting the wine flavor. In wine fermentation, fungi contribute more sensory-active biochemical compounds than bacteria. In this study, we employed amplicon sequencing to measure samples from the spontaneous fermentation process of cabernet sauvignon wines from two wine-growing regions in China to study the diversity and structural evolution of fungi during spontaneous fermentation and analyze the correlation between fungi and volatile compounds. The results showed significant differences in fungal community structure and diversity in cabernet sauvignon musts from different geographical origins, and these differences affected the flavor quality of the wines. As alcoholic fermentation progressed, Saccharomyces became the dominant fungal genus and reshaped the fungal community structure, and the diversity of the fungal community decreased. However, the fungal communities of each wine-growing region remained distinct throughout the fermentation process. Furthermore, the correlation between the fungal community and volatile compounds indicated that wine is a product of fermentation involving multiple fungal genera, and the flavor is influenced by a variety of fungi. Our study enhances the comprehension of fungal communities in Chinese wine-growing regions, explaining the regulatory role of wine-related fungal microorganisms in wine flavor. Full article
Show Figures

Figure 1

19 pages, 688 KiB  
Article
Enriched Red Wine: Phenolic Profile, Sensory Evaluation and In Vitro Bioaccessibility of Phenolic Compounds
by Óscar A. Muñoz-Bernal, Alma A. Vazquez-Flores, Laura A. de la Rosa, Joaquín Rodrigo-García, Nina R. Martínez-Ruiz and Emilio Alvarez-Parrilla
Foods 2023, 12(6), 1194; https://doi.org/10.3390/foods12061194 - 11 Mar 2023
Cited by 22 | Viewed by 3712
Abstract
The beneficial health effect of red wine depends on its phenolic content and the phenolic content in red wines is affected by ecological, agricultural, and enological practices. Enriched wines have been proposed as an alternative to increase the phenolic content in wines. Nevertheless, [...] Read more.
The beneficial health effect of red wine depends on its phenolic content and the phenolic content in red wines is affected by ecological, agricultural, and enological practices. Enriched wines have been proposed as an alternative to increase the phenolic content in wines. Nevertheless, phenolic compounds are related to the sensory characteristics of red wines, so enrichment of red wines requires a balance between phenolic content and sensory characteristics. In the present study, a Merlot red wine was enriched with a phenolic extract obtained from Cabernet Sauvignon grape pomace. Two levels of enrichment were evaluated: 4 and 8 g/L of total phenolic content (gallic acid equivalents, GAE). Wines were evaluated by a trained panel to determine their sensory profile (olfactive, visual, taste, and mouthfeel phases). The bioaccessibility of phenolic compounds from enriched red wines was evaluated using an in vitro digestive model and phenolic compounds were quantified by High Performance Liquid Chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). Enrichment increased mainly flavonols and procyanidins. Such an increase impacted astringency and sweetness perceived by judges. This study proposes an alternative to increase the phenolic content in wines without modifying other main sensory characteristics and offers a potential beneficial effect on the health of consumers. Full article
Show Figures

Figure 1

16 pages, 2414 KiB  
Article
A Simple Method Using an Allometric Model to Quantify the Carbon Sequestration Capacity in Vineyards
by Rui Song, Zongwen Zhu, Liang Zhang, Hua Li and Hua Wang
Plants 2023, 12(5), 997; https://doi.org/10.3390/plants12050997 - 22 Feb 2023
Cited by 6 | Viewed by 2789
Abstract
Winegrapes are an important component of agroecosystems. They are endowed with great potential to sequester and store carbon to slow down greenhouse gas emissions. Herein, the biomass of grapevines was determined, and the carbon storage and distribution features of vineyard ecosystems were correspondingly [...] Read more.
Winegrapes are an important component of agroecosystems. They are endowed with great potential to sequester and store carbon to slow down greenhouse gas emissions. Herein, the biomass of grapevines was determined, and the carbon storage and distribution features of vineyard ecosystems were correspondingly analyzed using an allometric model of winegrape organs. Then, the carbon sequestration of Cabernet Sauvignon vineyard in the Helan Mountain East Region was quantified. It was found that the total carbon storage of grapevines increased with vine age. The amounts of the total carbon storage in the 5-year-old, 10-year-old, 15-year-old, and 20-year-old vineyards were 50.22 t·ha−1, 56.73 t·ha−1, 59.10 t·ha−1, and 61.06 t·ha−1, respectively. The soil held the majority of the carbon storage, which was concentrated in the top and subsurface layers (0–40 cm) of the soil. Moreover, the biomass carbon storage was mainly distributed in the perennial organs (perennial branches and roots). In young vines, carbon sequestration increased each year; however, the increased rate in carbon sequestration decreased with winegrape growth. The results indicated that vineyards have a net carbon sequestration capacity, and within certain years, the age of grapevines was found to be positively correlated with the amount of carbon sequestration. Overall, the present study provided accurate estimations of the biomass carbon storage in grapevines using the allometric model, which may help vineyards become recognized as important carbon sinks. Additionally, this research can also be used as a basis for figuring out the ecological value of vineyards on a regional scale. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

23 pages, 1489 KiB  
Article
Influence of the Processing Parameters on the Aroma Profile and Chemical Composition of Conventional and Ecological Cabernet Sauvignon Red Wines during Concentration by Reverse Osmosis
by Ivana Ivić, Mirela Kopjar, Jasmina Obhođaš, Andrija Vinković, Jurislav Babić, Josip Mesić and Anita Pichler
Membranes 2022, 12(10), 1008; https://doi.org/10.3390/membranes12101008 - 17 Oct 2022
Viewed by 2210
Abstract
Wine aroma represents one of the most important quality parameters and it is influenced by various factors, such as climate conditions, viticulture and vinification techniques, storage conditions, etc. Wines produced from conventionally and ecologically grown grapes of the same variety have different chemical [...] Read more.
Wine aroma represents one of the most important quality parameters and it is influenced by various factors, such as climate conditions, viticulture and vinification techniques, storage conditions, etc. Wines produced from conventionally and ecologically grown grapes of the same variety have different chemical compositions and aroma profiles. The composition of wine can also be influenced by the additional treatment of wine, such as the concentration of wine by reverse osmosis (RO). The aim of this study was to investigate the influence of four different pressures (2.5, 3.5, 4.5 and 5.5 MPa) and two temperature regimes (with and without cooling) on the aroma profile and chemical composition of conventional and ecological Cabernet Sauvignon red wine during concentration by reverse osmosis. The results showed that different processing parameters influenced the permeate flux, the retentate temperature and the compounds retention. Higher working pressures (4.5 and 5.5 MPa) and the regime, with cooling, resulted in a higher retention of the total aroma compounds than the opposite processing parameters. The retention of individual compounds depended also on their chemical properties and their interactions with the membrane surface. The reverse osmosis membranes proved to be permeable for ethanol, acetic acid or undesirable 4-ethylphenol and 4-ethylguaiacol that made them applicable for their correction or removal. Full article
(This article belongs to the Special Issue Novel Membranes for Molecular Separations)
Show Figures

Figure 1

21 pages, 1625 KiB  
Article
Influence of Reverse Osmosis Process in Different Operating Conditions on Phenolic Profile and Antioxidant Activity of Conventional and Ecological Cabernet Sauvignon Red Wine
by Ivana Ivić, Mirela Kopjar, Ivana Buljeta, Dubravko Pichler, Josip Mesić and Anita Pichler
Membranes 2022, 12(1), 76; https://doi.org/10.3390/membranes12010076 - 8 Jan 2022
Cited by 7 | Viewed by 3727
Abstract
Red wine polyphenols are responsible for its colour, astringency, and bitterness. They are known as strong antioxidants that protect the human body from the harmful effects of free radicals and prevent various diseases. Wine phenolics are influenced by viticulture methods and vinification techniques, [...] Read more.
Red wine polyphenols are responsible for its colour, astringency, and bitterness. They are known as strong antioxidants that protect the human body from the harmful effects of free radicals and prevent various diseases. Wine phenolics are influenced by viticulture methods and vinification techniques, and therefore, conventionally and ecologically produced wines of the same variety do not have the same phenolic profile. Ecological viticulture avoids the use of chemical adjuvants in vineyards in order to minimise their negative influence on the environment, wine, and human health. The phenolic profile and antioxidant activity of wine can also be influenced by additional treatments, such as concentration by reverse osmosis. The aim of this study was to investigate the influence of four different pressures (2.5, 3.5, 4.5, and 5.5 MPa) and two temperature regimes (with and without cooling) on the phenolic profile and antioxidant activity of conventional and ecological Cabernet Sauvignon red wine during concentration by reverse osmosis. The results showed that retention of individual phenolic compounds depended on the applied processing parameters, chemical composition of the initial wine, and chemical properties of a compound. Higher pressure and retentate cooling favoured the retention of total polyphenols, flavonoids, and monomeric anthocyanins, compared to the opposite conditions. The same trend was observed for antioxidant activity. Full article
(This article belongs to the Special Issue Recent Advances in Membrane Technology for Food Processing)
Show Figures

Figure 1

17 pages, 8745 KiB  
Article
Carbon Storage Distribution Characteristics of Vineyard Ecosystems in Hongsibu, Ningxia
by Liang Zhang, Tingting Xue, Feifei Gao, Ruteng Wei, Zhilei Wang, Hua Li and Hua Wang
Plants 2021, 10(6), 1199; https://doi.org/10.3390/plants10061199 - 11 Jun 2021
Cited by 14 | Viewed by 3433
Abstract
Given that the global winegrape planting area is 7.2 × 106 hm2, the potential for winegrape crop-mediated carbon capture and storage as an approach to reducing greenhouse gas emissions warranted further research. Herein, we employed an allometric model of various [...] Read more.
Given that the global winegrape planting area is 7.2 × 106 hm2, the potential for winegrape crop-mediated carbon capture and storage as an approach to reducing greenhouse gas emissions warranted further research. Herein, we employed an allometric model of various winegrape organs to assess biomass distributions, and we evaluated the carbon storage distribution characteristics associated with vineyard ecosystems in the Hongsibu District of Ningxia. We found that the total carbon storage of the Vitis vinifera ‘Cabernet Sauvignon’ vineyard ecosystem was 55.35 t·hm−2, of which 43.12 t·hm−2 came from the soil, while the remaining 12.23 t·hm−2 was attributable to various vine components including leaves (1.85 t·hm−2), fruit (2.16 t·hm−2), canes (1.83 t·hm−2), perennial branches (2.62 t·hm−2), and roots (3.78 t·hm−2). Together, these results suggested that vineyards can serve as an effective carbon sink, with the majority of carbon being sequestered at the soil surface. Within the grapevines themselves, most carbon was stored in perennial organs including perennial branches and roots. Allometric equations based on simple and practical biomass and biometric measurements offer a means whereby grape-growers and government entities responsible for ecological management can better understand carbon distribution patterns associated with vineyards. Full article
Show Figures

Figure 1

18 pages, 1387 KiB  
Article
Concentration with Nanofiltration of Red Wine Cabernet Sauvignon Produced from Conventionally and Ecologically Grown Grapes: Effect on Phenolic Compounds and Antioxidant Activity
by Ivana Ivić, Mirela Kopjar, Dubravko Pichler, Ivana Buljeta and Anita Pichler
Membranes 2021, 11(5), 322; https://doi.org/10.3390/membranes11050322 - 28 Apr 2021
Cited by 6 | Viewed by 2954
Abstract
The aim of this study was to investigate the influence of different operating conditions (four pressures: 2.5, 3.5, 4.5 and 5.5 MPa; two temperature regimes: with and without cooling) and wine type on phenolic compounds retention during the nanofiltration process of two Cabernet [...] Read more.
The aim of this study was to investigate the influence of different operating conditions (four pressures: 2.5, 3.5, 4.5 and 5.5 MPa; two temperature regimes: with and without cooling) and wine type on phenolic compounds retention during the nanofiltration process of two Cabernet Sauvignon red wines (conventionally and ecologically produced). The nanofiltration process was conducted on Alfa Laval LabUnit M20 with plate module and six NF M20 membranes. In initial wines and obtained retentates, total polyphenol and flavonoid contents, monomeric anthocyanins content, antioxidant activity, individual phenolic compounds and CIELab colour parameters were determined. A loss of total phenolic compounds and decrease in antioxidant activity was observed in all retentates comparing to initial wine. However, retentate cooling and higher pressure increased their retention. Besides processing parameters, individual phenolic compound retention depended on several factors, such as the wine type, chemical properties of compounds and membrane type, and their combinations. Different chemical composition of initial conventional and ecological wine influenced the retention of individual compounds. Full article
(This article belongs to the Special Issue New Phenomenological Findings in Nanofiltration)
Show Figures

Figure 1

24 pages, 1964 KiB  
Article
Concentration with Nanofiltration of Red Wine Cabernet Sauvignon Produced from Conventionally and Ecologically Grown Grapes: Effect on Volatile Compounds and Chemical Composition
by Ivana Ivić, Mirela Kopjar, Jasmina Obhođaš, Andrija Vinković, Dubravko Pichler, Josip Mesić and Anita Pichler
Membranes 2021, 11(5), 320; https://doi.org/10.3390/membranes11050320 - 27 Apr 2021
Cited by 12 | Viewed by 3519
Abstract
Ecological viticulture represent an upward trend in many countries. Unlike conventional viticulture, it avoids the use of chemical fertilizers and other additives, minimizing the impact of chemicals on the environment and human health. The aim of this study was to investigate the influence [...] Read more.
Ecological viticulture represent an upward trend in many countries. Unlike conventional viticulture, it avoids the use of chemical fertilizers and other additives, minimizing the impact of chemicals on the environment and human health. The aim of this study was to investigate the influence of nanofiltration (NF) process on volatiles and chemical composition of conventional and ecological Cabernet Sauvignon red wine. The NF process was conducted on laboratory Alfa Laval LabUnit M20 (De Danske Sukkerfabrikker, Nakskov, Denmark) equipped with six NF M20 membranes in a plate module, at two temperature regimes, with and without cooling and four pressures (2.5, 3.5, 4.5 and 5.5 MPa). Different processing parameters significantly influenced the permeate flux which increased when higher pressure was applied. In initial wines and obtained retentates, volatile compounds, chemical composition and elements concentration were determined. The results showed that the higher pressure and retentate cooling was more favourable for total volatiles retention than lower pressure and higher temperature. Individual compound retention depended on its chemical properties, applied processing parameters and wine composition. Nanofiltration process resulted in lower concentrations of ethanol, acetic acid (>50%), 4-ethylphenol and 4-ethylguaiacol (>90%). Different composition of initial feed (conventional and ecological wine) had an important impact on retention of elements. Full article
(This article belongs to the Special Issue New Phenomenological Findings in Nanofiltration)
Show Figures

Figure 1

17 pages, 2306 KiB  
Article
Effects of Context and Virtual Reality Environments on the Wine Tasting Experience, Acceptability, and Emotional Responses of Consumers
by Damir D. Torrico, Yitao Han, Chetan Sharma, Sigfredo Fuentes, Claudia Gonzalez Viejo and Frank R. Dunshea
Foods 2020, 9(2), 191; https://doi.org/10.3390/foods9020191 - 14 Feb 2020
Cited by 61 | Viewed by 10351
Abstract
Wine tasting is a multidimensional experience that includes contextual information from tasting environments. Formal sensory tastings are limited by the use of booths that lack ecological validity and engagement. Virtual reality (VR) can overcome this limitation by simulating different environmental contexts. Perception, sensory [...] Read more.
Wine tasting is a multidimensional experience that includes contextual information from tasting environments. Formal sensory tastings are limited by the use of booths that lack ecological validity and engagement. Virtual reality (VR) can overcome this limitation by simulating different environmental contexts. Perception, sensory acceptability, and emotional responses of a Cabernet Sauvignon wine under traditional sensory booths, contextual environments, and VR simulations were evaluated and compared. Participants (N = 53) performed evaluations under five conditions: (1) traditional booths, (2) bright-restaurant (real environment with bright lights), (3) dark-restaurant (real environment with dimly lit candles), (4) bright-VR (VR restaurant with bright lights), and (5) dark-VR (VR restaurant with dimly lit candles). Participants rated the acceptability of aroma, sweetness, acidity, astringency, mouthfeel, aftertaste, and overall liking (9-point hedonic scale), and intensities of sweetness, acidity, and astringency (15-point unstructured line-scale). Results showed that context (booths, real, or VR) affected the perception of the wine’s floral aroma (dark-VR = 8.6 vs. booths = 7.5). Liking of the sensory attributes did not change under different environmental conditions. Emotional responses under bright-VR were associated with “free”, “glad”, and “enthusiastic”; however, under traditional booths, they were related to “polite” and “secure”. “Nostalgic” and “daring” were associated with dark-VR. VR can be used to understand contextual effects on consumer perceptions. Full article
Show Figures

Figure 1

13 pages, 221 KiB  
Article
Volatile Compounds of Young Wines from Cabernet Sauvignon, Cabernet Gernischet and Chardonnay Varieties Grown in the Loess Plateau Region of China
by Bao Jiang and Zhenwen Zhang
Molecules 2010, 15(12), 9184-9196; https://doi.org/10.3390/molecules15129184 - 10 Dec 2010
Cited by 164 | Viewed by 9651
Abstract
In order to elucidate the aroma components of wine produced in the Loess Plateau region of China, volatile compounds of young wines from Cabernet Sauvignon, Cabernet Gernischet and Chardonnay varieties grown in the new ecological region were investigated for the first time in [...] Read more.
In order to elucidate the aroma components of wine produced in the Loess Plateau region of China, volatile compounds of young wines from Cabernet Sauvignon, Cabernet Gernischet and Chardonnay varieties grown in the new ecological region were investigated for the first time in this research. Among the volatile compounds analyzed by HS-SPME with GC-MS, a total of 45, 44 and 42 volatile compounds were identified and quantified in Cabernet Sauvignon, Cabernet Gernischet and Chardonnay wines, respectively. In the volatiles detected, alcohols formed the most abundant group in the aroma compounds of the three wines, followed by esters and fatty acids. According to their odor active values (OAVs), 18 volatile compounds were always present in the three wines at concentrations higher than their threshold values, but ethyl octanoate, ethyl hexanoate, and isoamyl acetate were found to jointly contribute to 92.9%, 93.3%, and 98.7%, of the global aroma of Cabernet Sauvignon, Cabernet Gernischet and Chardonnay wines, respectively. These odorants are associated with “fruity’’ and ‘‘ripe fruit’’ odor descriptors. Full article
Back to TopTop