Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = ebro watershed

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3973 KiB  
Article
The Use of Zooplankton Metrics to Determine the Trophic Status and Ecological Potential: An Approach in a Large Mediterranean Watershed
by Manuel E. Muñoz-Colmenares, María D. Sendra, Xavier Sòria-Perpinyà, Juan Miguel Soria and Eduardo Vicente
Water 2021, 13(17), 2382; https://doi.org/10.3390/w13172382 - 30 Aug 2021
Cited by 15 | Viewed by 4606
Abstract
In the European Water Framework Directive, zooplankton was not included as a Biological Quality Element despite its important place in the aquatic trophic web. In the present study on zooplankton abundances and biomasses, we used several metrics to test their ability to detect [...] Read more.
In the European Water Framework Directive, zooplankton was not included as a Biological Quality Element despite its important place in the aquatic trophic web. In the present study on zooplankton abundances and biomasses, we used several metrics to test their ability to detect differences among trophic statuses and ecological potential levels, and collected a large sum of data in more than 60 reservoirs at Ebro watershed, on more than 300 sampling occasions over 10 years. Our results indicate that most zooplankton metrics are correlated to environmental variables that determine reservoirs’ trophic states, especially chlorophyll a and total phosphorus. The metrics with better sensitivity to differentiate trophic states and ecological potential levels were ZOO (total zooplankton), LZOO (large zooplankton), CLAD (cladocerans), and ZOO:CHLA (zooplankton:chlorophyll a ratio). Microcrustacean metrics such as DAPHN (Daphnia), COP (copepods), CYCLO (cyclopoids), and CALA (calanoids) were good at differentiating between high and low water quality in trophic status (oligotrophic–eutrophic) and ecological potential (good or superior–moderate). Thus, zooplankton can be used as a valuable tool to determine water quality; we believe that zooplankton should be considered a Biological Quality Element within Water Framework Directive monitoring programs for inland waters. Full article
Show Figures

Graphical abstract

12 pages, 1027 KiB  
Article
Applying Cascade-Correlation Neural Networks to In-Fill Gaps in Mediterranean Daily Flow Data Series
by Cristina Vega-Garcia, Mathieu Decuyper and Jorge Alcázar
Water 2019, 11(8), 1691; https://doi.org/10.3390/w11081691 - 15 Aug 2019
Cited by 12 | Viewed by 3288
Abstract
The analyses of water resources availability and impacts are based on the study over time of meteorological and hydrological data trends. In order to perform those analyses properly, long records of continuous and reliable data are needed, but they are seldom available. Lack [...] Read more.
The analyses of water resources availability and impacts are based on the study over time of meteorological and hydrological data trends. In order to perform those analyses properly, long records of continuous and reliable data are needed, but they are seldom available. Lack of records as in gaps or discontinuities in data series and quality issues are two of the main problems more often found in databases used for climate studies and water resources management. Flow data series from gauging stations are not an exception. Over the last 20 years, forecasting models based on artificial neural networks (ANNs) have been increasingly applied in many fields of natural resources, including hydrology. This paper discusses results obtained on the application of cascade-correlation ANN models to predict daily water flow using Julian day and rainfall data provided by nearby weather stations in the Ebro river watershed (Northeast Spain). Five unaltered gauging stations showing a rainfall-dominated hydrological regime were selected for the study. Daily flow and weather data series covered 30 years to encompass the high variability of Mediterranean environments. Models were then applied to the in-filling of existing gaps under different conditions related to the characteristics of the gaps (6 scenarios). Results showed that when short periods before and after the gap are considered, this is a useful approach, although no general rule applied to all stations and gaps investigated. Models for low-water-flow periods provided better results (r = 0.76–0.8). Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

27 pages, 5069 KiB  
Article
Flow Regime and Nutrient-Loading Trends from the Largest South European Watersheds: Implications for the Productivity of Mediterranean and Black Sea’s Coastal Areas
by Stefano Cozzi, Carles Ibáñez, Luminita Lazar, Patrick Raimbault and Michele Giani
Water 2019, 11(1), 1; https://doi.org/10.3390/w11010001 - 20 Dec 2018
Cited by 71 | Viewed by 6915
Abstract
In the last century, large watersheds in Southern Europe have been impacted by a combination of anthropogenic and climatic pressures, which have rapidly evolved to change the ecological status of freshwater and coastal systems. A comparative analysis was performed for Ebro, Rhône, Po [...] Read more.
In the last century, large watersheds in Southern Europe have been impacted by a combination of anthropogenic and climatic pressures, which have rapidly evolved to change the ecological status of freshwater and coastal systems. A comparative analysis was performed for Ebro, Rhône, Po and Danube rivers, to investigate if they exhibited differential dynamics in hydrology and water quality that can be linked to specific human and natural forces acting at sub-continental scales. Flow regime series were analyzed from daily to multi-decadal scales, considering frequency distributions, trends (Mann–Kendall and Sen tests) and discontinuities (SRSD Method). River loads of suspended matter, nutrients and organic matter and the eutrophication potential of river nutrients were estimated to assess the impact of river loads on adjacent coastal areas. The decline of freshwater resources largely impacted the Ebro watershed on annual (−0.139 km3 yr−1) and seasonal (−0.4% yr−1) scales. In the other rivers, only spring–summer showed significant decreases of the runoff coupled to an exacerbated flow variability (0.1–0.3% yr−1), which suggested the presence of an enhanced regional climatic instability. Discontinuities in annual runoff series (every 20–30 years) indicated a similar long-term evolution of Rhône and Po rivers, differently from Ebro and Danube. Higher nutrient concentrations in the Ebro and Po (+50%) compared to Rhône and Danube and distinct stoichiometric nutrient ratios may exert specific impacts on the growth of plankton biomass in coastal areas. The overall decline of inorganic phosphorus in the Rhône and Po (since the 1980s) and the Ebro and Danube (since the 1990s) mitigated the eutrophication in coastal ecosystems inducing, however, a phase in which the role of organic phosphorus loads (Po > Danube > Rhône > Ebro) on coastal productivity could be more relevant. Overall, the study showed that the largest South European watersheds are differently impacted by anthropogenic and climatic forces and that this will influence their vulnerability to future changes of flow regime and water quality. Full article
(This article belongs to the Special Issue Environmental Flows, Ecological Quality and Ecosystem Services)
Show Figures

Graphical abstract

24 pages, 1794 KiB  
Article
Spatial Modeling of Rainfall Patterns over the Ebro River Basin Using Multifractality and Non-Parametric Statistical Techniques
by José L. Valencia, Ana M. Tarquis, Antonio Saa, María Villeta and José M. Gascó
Water 2015, 7(11), 6204-6227; https://doi.org/10.3390/w7116204 - 6 Nov 2015
Cited by 8 | Viewed by 6969
Abstract
Rainfall, one of the most important climate variables, is commonly studied due to its great heterogeneity, which occasionally causes negative economic, social, and environmental consequences. Modeling the spatial distributions of rainfall patterns over watersheds has become a major challenge for water resources management. [...] Read more.
Rainfall, one of the most important climate variables, is commonly studied due to its great heterogeneity, which occasionally causes negative economic, social, and environmental consequences. Modeling the spatial distributions of rainfall patterns over watersheds has become a major challenge for water resources management. Multifractal analysis can be used to reproduce the scale invariance and intermittency of rainfall processes. To identify which factors are the most influential on the variability of multifractal parameters and, consequently, on the spatial distribution of rainfall patterns for different time scales in this study, universal multifractal (UM) analysis—C1, α, and γs UM parameters—was combined with non-parametric statistical techniques that allow spatial-temporal comparisons of distributions by gradients. The proposed combined approach was applied to a daily rainfall dataset of 132 time-series from 1931 to 2009, homogeneously spatially-distributed across a 25 km × 25 km grid covering the Ebro River Basin. A homogeneous increase in C1 over the watershed and a decrease in α mainly in the western regions, were detected, suggesting an increase in the frequency of dry periods at different scales and an increase in the occurrence of rainfall process variability over the last decades. Full article
(This article belongs to the Special Issue New Developments in Methods for Hydrological Process Understanding)
Show Figures

Figure 1

Back to TopTop