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Abstract: The analyses of water resources availability and impacts are based on the study over time of
meteorological and hydrological data trends. In order to perform those analyses properly, long records
of continuous and reliable data are needed, but they are seldom available. Lack of records as in gaps
or discontinuities in data series and quality issues are two of the main problems more often found in
databases used for climate studies and water resources management. Flow data series from gauging
stations are not an exception. Over the last 20 years, forecasting models based on artificial neural
networks (ANNs) have been increasingly applied in many fields of natural resources, including
hydrology. This paper discusses results obtained on the application of cascade-correlation ANN
models to predict daily water flow using Julian day and rainfall data provided by nearby weather
stations in the Ebro river watershed (Northeast Spain). Five unaltered gauging stations showing
a rainfall-dominated hydrological regime were selected for the study. Daily flow and weather
data series covered 30 years to encompass the high variability of Mediterranean environments.
Models were then applied to the in-filling of existing gaps under different conditions related to the
characteristics of the gaps (6 scenarios). Results showed that when short periods before and after the
gap are considered, this is a useful approach, although no general rule applied to all stations and
gaps investigated. Models for low-water-flow periods provided better results (r = 0.76–0.8).

Keywords: artificial neural networks; water flow model; hydrological data; data gaps

1. Introduction

Water resources management is based on the study over time of meteorological and hydrological
data trends. In order to evaluate resource availability and possible impacts, long records of continuous
and reliable data are needed, but they are seldom available. Lack of records (gaps) or discontinuities in
data series and quality issues are two of the main problems more often found in databases used for
climate studies and water resources management [1–6], especially in mountain regions with limited
meteorological monitoring and abundant precipitation often associated to extreme events [7]. Flow data
series from gauging stations are also affected by these problems. Unusual flood events may cause
breakdowns and failures in the gauging stations which usually result in gaps in the daily flow data
series, for instance. Moreover, even very short gaps may compromise the calculation of statistics and
data utility [8].

The problem of gaps in data series may be solved theoretically by completing daily flow records
from existing data at gauging stations nearby, either upstream or downstream of the same watercourse
(e.g., interpolation techniques), although the election of the donor station may be a critical factor
affecting the results [8]. Several methods have been used during the last decade for infilling missing
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data, including hydrodynamic modeling, remote sensing, or hydrological regionalization based on
catchment geomorphological and meteorological data integration, resulting in general multivariate
approaches (e.g., [1,3,9]). Calibrated hydrological models for gap-filling streamflow data may perform
adequately when estimating general annual trends [10], but in many cases it is not possible to apply
these procedures due to lack of data, or they do not provide the accuracy needed to generate daily flow
series that reflect the particular characteristics or specificity of each streamflow regime [6].

Approaches used in the past included physically-based rainfall-runoff models, conceptual models
(knowledge-driven), or data-driven models [11]. Data-driven, system-theoretical, or black-box models
are purely empirical and do not consider the complex physical laws in the real world, but as they
depend only on the information content in the hydrological data, they are usually easier to develop [12].
Techniques applied to streamflow prediction or in-filling missing data encompass a great variety of
statistical or artificial-intelligence procedures, linear and nonlinear: empirical regression, time series
analysis, partitioning modeling, fuzzy rule-based systems, k-nearest neighbor algorithm techniques,
pattern recognition, and artificial neural networks (e.g., [9,11,13–20]).

Artificial neural networks (ANN) have proven their value in many complex hydrological modeling
problems [6,21–23], often improving results in comparison with other techniques [17,20,24–29]. By using
historical data, it is possible to fit the ANN models to the patterns in the data [23,30–32]. They provide
many advantages in the robust modeling of nonlinear systems [21,23], but Wu and Chau [20] have
pointed out that conclusions in the literature are very inconsistent. Some hybrid models that combine
mechanistic and ANN models have also been proposed [12,33] to jointly account for linear and
nonlinear trends [34] or to aid with the configuration of ANN models (selection of inputs and/or
outputs, e.g., correlograms for Joshi and Patel [27], chaos theory in Elshorbagy et al. [17], moving
averages in Wu and Chau [20] and Kashei and Bijari [35]).

Problems most commonly found when working with ANNs are linked to the fact that most authors
use variants of the back-propagation model, which architecture is set by trial and error [17,27,36],
running many models because they are sensitive to initial weights and have local minima issues. De Vos
and Rientjes [11] and Solaimani [12] have dealt with modeling constraints and design aspects that
affect model results and performance, and Kalteh [36] has proposed useful approaches to understand
the inner representations embedded in the net architecture.

In our study we intended to test the potential of a different ANN type, the cascade-correlation
algorithm developed by Fahlman and Lebiere [37] for completing discontinuous daily water flow
records in a Mediterranean watershed, coupled with data preprocessing and a genetic algorithm [38]
for optimal selection of inputs, an approach used before by Alcazar et al. [21] in environmental flow
prediction. The advantage of this model is that its architecture needs not to be set by trial and error like
in back-propagation, but optimal hidden layer dimension and net architecture are optimized during
the training phase.

Our filling procedure was based on readily available variables, namely, Julian day and precipitation
data from existing weather stations located within the watershed area, the usual most important
variables to make streamflow predictions [2,23]. Our method could be classified as a single series
approach according to the systematization done by Elshorbagy et al. [16], where only one time series is
available for the analysis, instead of using two correlated time series (bi-series approach). Nevertheless,
an attempt at the identification of Elshorbagy et al.’s groups and modeling the intra-group structure
was done through the use of data scenarios. It was expected that the high-variability characteristic of
Mediterranean streams would pose more challenges to in-filling than other more stable environments
and required considering changing intra (seasonal) and inter-annual flow conditions.
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2. Materials and Methods

2.1. Study Area

The domain of study was the Ebro river basin in Spain which is located in the northeast of the
country (Figure 1) and has an approximate area of 85,550 km2 [21]. It has a total length of 910 km, and
it is the most important river in Spain in terms of flow, with an average water discharge of 430 m3/s.
The Ebro river is of major importance for ecological and human purposes, being subject to substantial
demands from hydropower generation, irrigation of agricultural fields, and recreation and urban
uses [1].

Water 2019, 11, x FOR PEER REVIEW 3 of 12 

 

The domain of study was the Ebro river basin in Spain which is located in the northeast of the 
country (Figure 1) and has an approximate area of 85,550 km2 [21]. It has a total length of 910 km, and 
it is the most important river in Spain in terms of flow, with an average water discharge of 430 m3/s. 
The Ebro river is of major importance for ecological and human purposes, being subject to substantial 
demands from hydropower generation, irrigation of agricultural fields, and recreation and urban 
uses [1]. 

 
Figure 1. Location of the gauging stations, watersheds, and climate stations used for this study at the 
Ebro river basin (Spain). 

2.2. Database 

Five gauging stations (GS) out of the 240 existing within the watershed were selected for this study 
(Figure 1, Table 1). They were selected because all of them presented unimpaired, natural flow regimes 
with a reliable data range of 30 years (1976–2005) of daily weather and flow records (average daily water 
discharge in m3/s), and no more than three gaps. In the context of this study, we define a gap as a 
discontinuity in the daily flow data series due to missing data of at least one or more consecutive days. 
The continuous period of years used for the study was selected based on data reliability and availability, 
but also to account for the variability of the Mediterranean climate in this area. The study period 
included dry spells in the 1980s and 1990s, but also periods in the 1970s and 2000s that were humid in 
Spain. The selected gauging stations showed a mainly rainfall-dominated hydrological regime. Table 1 
and Figure 1 show the location and main characteristics of the weather and gauging stations. 

 
 
 
 
 
 

Figure 1. Location of the gauging stations, watersheds, and climate stations used for this study at the
Ebro river basin (Spain).

2.2. Database

Five gauging stations (GS) out of the 240 existing within the watershed were selected for this
study (Figure 1, Table 1). They were selected because all of them presented unimpaired, natural
flow regimes with a reliable data range of 30 years (1976–2005) of daily weather and flow records
(average daily water discharge in m3/s), and no more than three gaps. In the context of this study,
we define a gap as a discontinuity in the daily flow data series due to missing data of at least one or
more consecutive days. The continuous period of years used for the study was selected based on data
reliability and availability, but also to account for the variability of the Mediterranean climate in this
area. The study period included dry spells in the 1980s and 1990s, but also periods in the 1970s and
2000s that were humid in Spain. The selected gauging stations showed a mainly rainfall-dominated
hydrological regime. Table 1 and Figure 1 show the location and main characteristics of the weather
and gauging stations.
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Table 1. Location and main characteristics of weather and gauging stations.

Gauging Stations

Code River City
Coord. UTM
(Zone 30N)

GS
Altitude

(m.o.s.l.) 1

Max.
Altitude

(m.o.s.l.) 1

GS Watershed
Area (km2)

GS Mean Day
Flow (m3/s)

X Y

7 Jalón Cetina 586,579 4,572,511 670 1370 1600 0.20
57 Deza Embid de A. 585,145 4,582,454 782 1309 207 0.17
78 Cemborain Garinoain 611,419 4,717,013 490 1030 47 0.30
86 Zidacos Barasoaín 610,830 4,717,489 494 990 76 0.22
150 Salado Estenoz 588,002 4,733,510 480 1009 28 0.18

Weather Stations

Code City
Coord. UTM
(Zone 30N) Altitude (m.o.s.l.) 1 Corresponding Gaug. Stations

X Y

9245I Lerga 622,963 4,714,022 615 78, 86
9279 Alloz (Reser.) 586,299 4,728,155 475 150

9350A Ariza 579,125 4,574,114 700 7, 57
9354 Cetina 586,710 4,571,825 680 7, 57

1 Meters over sea level.

The GS databases presented a total of 11 gaps (Table 2) in flow records ranging from 6 to 272 days
(nine months) out of a possible maximum of 11,950 records (30 years × 365 days). Missing daily flow
data values for each gap would be modeled from meteorological data provided by four nearby weather
stations. The variables used for completing gaps in the database were Julian day (JD), the precipitation
(mm) on the day we had the missing value (PP), and the precipitation on the five days before the date
of the missing value (PP-1 to PP-5). The calculated time of concentration using Kirpich’s equation [39]
for the different watersheds ranged from 1 to 9 h. Furthermore, from the analysis of the precipitation
and streamflow data series, we found that the response of watersheds to rainfall events translates in
the streamflow data series as peak flows always within a period of 5 days after the weather event. So,
given the size of the watersheds and giving time enough for water from the watershed divide to reach
the watershed outlet (time of concentration), a period of 5 days was considered appropriate for the
particularities of shape, topography, vegetation, and soil characteristics of the watersheds studied.

Table 2. Dates and dimensions of the gaps for each gauging station, type of year and season.

GS Date and Size of Gaps Type of Year Season

7 30 June–23 August 1984 (55 days) normal low water flow
7 16 February–12 May 1988(87 days) wet high water flow
7 18 June–4 July 1991 (17 days) dry low water flow

57 11–30 June 1991 (20 days) dry low water flow
78 17 November–14 December 1992 (28 days) normal medium water flow
78 8 March–19 July 2004 (134 days) normal high-low
86 1 October 1992–29 June 1993 (272 days) normal low-high-low
86 13–18 July 2005 (6 days) normal low water flow
150 26 July–12 September 1986 (49 days) normal low water flow
150 24 February–11 May 1994 (77 days) normal high water flow
150 16 October–16 November 2004 (32 days) normal low water flow

2.3. ANN Models

Besides the fact that ANN models have proved highly accurate in many previous hydrological
applications [6,21–23], in this case, the use of ANN had additional advantages since weather variables
would be expected to be highly correlated spatially and temporally, violating assumptions required for
traditional statistical model building [21].

There are many types of artificial neural networks, but a specific multilayered feed-forward
type of network was used in this study, the cascade-correlation model defined by Fahlman and
Lebiere [37] (CCANN). This algorithm was successfully used by Alcázar et al. [21] for the estimation of
environmental flows, and a similar model building procedure was followed here. This algorithm has
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the advantage of optimizing network architecture in the so-called ‘training’ or ‘learning’ process, so it
does not rely on trial-and-error for final architecture like back-propagation.

Any net model was initially built with an input layer (with nodes for JD and PP variables) and an
output layer (with one output node for mean daily flow), and no nodes in the hidden layer. Learning
proceeded by testing nodes for the hidden layer, altering their weights iteratively, and adding these new
nodes when they produced an improved net performance. We tested up to three new nodes (instead of
just one) for addition at each step of the iterative process, until no improvement in performance was
gained. An important difference with the previous environmental flow work (with only 46 training
cases) was that in the current gaps problem the number of cases was on the order of magnitude of
the thousands, so they did not limit network architecture and size. No constraints were imposed
for restricting the number of weights in the model, though this algorithm was designed for optimal
structure, and resulting models are usually parsimonious. As the number of weights (degrees of
freedom) was not an issue, nodes of our models were always fully connected by weights in three layers
(input-to-hidden, hidden-to-output, input-to-output).

We randomly split the databases for analysis in training (56%), test (24%), and validation (20%)
groups, as usual in neural network modeling (e.g., [12,27]). To avoid effects of this type of hold-out
method of cross-validation in model performance and testing [40], the random splitting was repeated
at least three times for each model, and 5 initial replicas were built with different sets of random
weights for each group at the beginning of training. Convergence of the 15 trials for each model to
a same or similar structure was considered a trait of robustness of the solution.

The iterative learning algorithm was based on an adaptative gradient learning rule [37,41],
a variant of the general algorithm of back-propagation [42,43]. Training performance was set to
optimize the Pearson product-moment correlation (r, Equation (1)) between observed and predicted
outcomes: the known flow values (average daily water discharge in m3/s) and the output of the net.
The test dataset was used to prevent overtraining; learning from the training set was periodically
stopped to compute r for the test set and did not continue updating weights once test r started to
decrease and diverge from training r. Once training was concluded, the validation dataset was run
through the network and its r computed. Predictive model performance was evaluated based on
balanced r’s for the three datasets, as r is the best known quantitative measure of performance among
the group of measures that preserve the pattern of data [40]. Additional criteria used to evaluate
the models were based on model residuals, or differences between observed and predicted mean
daily flows, specifically the root mean square error (RMSE), mean absolute error (MAE), and absolute
maximum error (AME) (Equations (1)–(4)) [40].

Root Mean Square Error (RMSE)

√√
1
n

n∑
i = 1

(yi − ŷi)
2 (1)

Mean Absolute Error (MAE)
1
n

n∑
i = 1

∣∣∣yi − ŷi
∣∣∣ (2)

Absolute Maximum Error (AME) max
∣∣∣yi − ŷi

∣∣∣ (3)
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∑n
i = 1
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−
y
)(

ŷi −
−
y
)

√∑n
i = 1

(
yi −

−
y
)2

√∑n
i = 1

(
ŷi −

−
y
)2

(4)

where y is the mean of observed values (yi observations) and ŷi are the predicted values.
Several transformations were applied to the independent variables and tested through a genetic

algorithm (GA, [38,44]) provided by Predict® 3.24 software [45] to determine the optimal inputs to
the models, previously to model building. In this case, the GA evolved a population of variable sets
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that were selected, mated, and mutated for a maximum number of 50 generations (patience = 7) in
order to find the fittest combination of independent variables for each network model. Reproduction
parameters applied were: cross-over probability = 0.7, mutation = 1.0, and elitist fraction = 0.05.
Fitness was evaluated by a logistic multiple regression function for each individual (or subset of the
model’s input variables, between 2–30 transformed variables) in the population. Once a best model
was obtained, a sensitivity analysis through partial derivatives [45] of the variables included as inputs
was used to rate their relative importance in the models [21].

2.4. Scenarios

Six different approaches were defined to optimize the predictive models of daily water flow for
all and each gap in any gauging station (Table 3). They were required because the natural variability of
flow regime (inter and intra-annual variability) is a key aspect in defining the functioning and structure
of a river (e.g., [46–49]), especially in Mediterranean ecosystems. However, this high variability of
the streamflow database could induce large errors when developing prediction models from large
time spans (30 years, Scenario 1). Consequently, several scenarios were proposed to reduce errors
induced by a high inter- and intra-annual daily flow variability while keeping the observations for
model building representative (Scenarios 2, 3, 4, 6).

We also considered that the hydrological response of watersheds is influenced by the basin
characteristics that regulate runoff, such as geomorphology, geology, and vegetation cover. Changes
in land cover over time due to either natural causes or human activities may vary the hydrological
behavior of the watershed, i.e., the relationship between precipitation and runoff. Then, the accuracy
of streamflow prediction models based only on precipitation data over a long period of time may
be lowered by errors related to vegetation cover changes, for instance. Scenario 5 tried to reduce
this possible source of error by reducing the time span of the observations used for modeling to
the short-term.

Table 3. Definition of the scenarios considered in the predictive models.

Scenarios Conditions

Scenario 1 General model, the whole range of 30 years of weather and flow data was used for all
gaps independently of year or season.

Scenario 2 Extreme years (outliers), if present, were removed, only when the gap was not located
within those years.

Scenario 3

Inter-annual variability of flow regimes was considered. All available years were
classified into three types, wet1, normal2, and dry3 year, based on the characterization
of the regime’s inter-annual variability, and according to the following criteria [50].
Only years of the same type as those where the gaps were occurring were used for the
corresponding analysis.

Scenario 4

Intra-annual variability of flow regimes was considered. Annual flow regimes were
divided in low, medium, and high flow periods based on an analysis of seasonal flow
variability (similar criteria than in scenario 3 was followed but applied to average
monthly values instead of annual values), and only data of the same seasonal period
as the gaps were used.

Scenario 5
Short periods of time we selected where the basin characteristics could be considered
invariable and therefore the hydrological response of the watershed did not change.
Only data of the two years before and after the gap were used for the analysis.

Scenario 6 Combined scenarios 4 and 5. Only data of the same seasonal flow period of the two
years before and after the gap were used for the analysis.

1 A year was considered to be wet if its annual volume in natural regime was greater than the volume corresponding
to the 25% exceedance percentile. 2 A year was considered to be normal/average if its annual volume in natural
regime laid between the volume corresponding to 25% and 75% exceedance percentile. 3 A year was considered
to be dry if its annual volume in a natural regime was lower than the 196 volume corresponding to the 75%
exceedance percentile.
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Consequently, we built models for each GA (5 GS models), for each gap in any GS (11 gap models),
and for these six scenarios, which raised the number of models built, validated, and analyzed for best
performance to 54, with 15 replicas each.

3. Results

Best models for each gauging station (GS), scenario, and gap are presented in Tables 4–8, if the
models were judged robust and adequate according to the performance criteria (r and RMSE in tables,
AME and MAE data not shown).

The most important results for the three gaps in GS-7 Jalón-Cetina can be examined in Table 4.
The results of GS-7 were based on climate stations 354 and 350A, but in some models one whole
station’s variables were left out. Models for scenarios S1, S2, and S3 all had r < 0.50, with S3 < 0.2. The
scenario S2 was the best for the longer 88’ spring gap (87 days), but performance was not very good in
the validation dataset, probably for the difficulty in modeling variable high water flows. The seasonal
scenario S4 was best for the small 1991 summer gap (17 days). Best results were achieved for the
55-days gap in summer 1984 in which the short-term S5 model reached r = 0.76 for the training dataset
and r = 0.82 for the test and validation datasets.

Table 4. Best model results for GS-7 (three gaps). Acronyms: GS (gauging station); CS (climate station);
S (scenario #); r (Pearson’s r correlation coefficient, p < 0.05); RMSE (root mean square error).

GS CS S Training r/RMSE Test r/RMSE Validation r/RMSE Date and Size of Gaps

7 354 and 350A 5 0.761 0.819 0.817 1984 (55 days)
0.257 0.184 0.280

7 354 and 350A 2 0.734 0.620 0.522 1988 (87 days)
0.367 0.486 0.441

7 354 4 0.704 0.700 0.619 1991 (17 days)
0.418 0.444 0.470

Station GS-57 Deza-Embid de Ariza was nearby and we used the same climate stations as for GS-7.
Analysis of the water flow curves over all the years based on the average monthly volume showed no
extreme years. No homogenous period within the year could be identified (heterogeneous data across
all months), so scenarios S2, S3, S4, and S6 could not be applied. The other scenarios gave unsatisfying
correlation values r < 0.50 for all replicas. Best results can be seen in Table 5.

Table 5. Best model results for GS-57 (one gap).

GS CS S Training r/RMSE Test r/RMSE Validation r/RMSE Date and Size of Gaps

57 354 and 350A 5 0.558 0.406 0.393 1991 (20 days)
0.068 0.085 0.103

Station GS-78 Cemborain-Garinoain water flow did not show any extreme years. The two existing
gaps overlapped the periods with homogenous very low water flow and the period with high
heterogeneous water flow so also here S2, S3, and S6 could not be applied. S1 and S4 gave low r values.
The S5 model produced the best results for the 28-day 1992 winter gap with an r = 0.60 for the trained
dataset and an r = 0.69 for the validation dataset (Table 6). The 2004 spring-summer gap (134 days)
was not successfully modeled under any of the scenarios.

Table 6. Model results for GS-78 (two gaps).

GS CS S Training r/RMSE Test r/RMSE Validation r/RMSE Date and Size of Gaps

78 245-I 5 0.602 0.547 0.696 1992 (28 days)
0.995 0.642 0.533
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GS-86 Zidacos-Barasoaínis shared climate station with GS-78. In this gauging station, all scenarios
could be applied for modeling but none of them gave good results (r values ≤ 0.50). The best model
results can be seen in Table 7, under S1.

Table 7. Model results for GS-86 (two gaps).

GS CS S Training r/RMSE Test r/RMSE Validation r/RMSE Date and Size of Gaps

86 245-I 1 0.508 0.428 0.444 1992 (272 days) + 2005 (6 days)
0.375 0.445 0.426

GS-150 Salado-Estenozis was modeled with independent weather variables from climate station
279. S1 showed r values close to 0.56 for training, test, and validation data for all three gaps. S2, S3, and
S6 could not be applied to the longer gaps (49-days and 77-days) because the gaps overlapped both
high and low flow periods. Models for the gap in the high period (32-days) gave bad correlations in
general (r values ≤ 0.50), except for S5. S5 provided reasonably good results for all the gaps (Table 8).

Table 8. Model results for GS-150 (three gaps).

GS CS S Training r/RMSE Test r/RMSE Validation r/RMSE Date and Size of Gaps

150 279 5 0.6625 0.662 0.610 1986 (49 days)
0.156 0.153 0.203

150 279 5 0.7395 0.758 0.717 1994 (77 days)
0.112 0.081 0.167

150 279 5 0.711 0.772 0.809 2004 (32 days)
0.173 0.129 0.116

In most models, and in all best models, architectures were parsimonious and solutions converged
to similar nets (Table 9). The differences between the r values of the training, test, and validation
datasets were well balanced (similar values for training, test, and validation groups) indicating good
reliability in the best models, and RMSEs were low (metric in the same units as the flow data).

The sensitivity analysis of the variables in the best models allowed to identify the most relevant
in predicting daily flows. Variables excluded from most models or with partial derivatives that did
not indicate relevant contribution were usually the precipitation values 4 and 5 days before the gaps,
but there were no clear trends across gauging stations. PP-3 was present in many models as quite
influential. Julian day was always in the models, but usually not as the most influential variable.

Table 9. Main characteristics of the models selected for the different gaps.

GS Date and Size of Gaps S ANN Structure Most Influential
Independent Variables

7 1984 (55 days) 5 12-5-1 PP-1 (354), PP-1 (350a)
7 1988 (87 days) 2 13-14-1 PP-4 (350A), PP-3, PP-2 (354)
7 1991 (17 days) 4 8-7-1 PP-5, PP-3, PP, PP-2 (354)

57 1991 (20 days) 5 12-12-1 PP3, PP-5 (354)
78 1992 (28 days) 5 13-4-1 PP, PP-4 (245-I), JD
86 1992 (272 days) + 2005 (6 days) 1 6-12-1 PP-3 (245-I), JD

150 1986 (49 days) 5 9-11-1 PP-3, PP5 (279)
150 1994 (77 days) 5 6-10-1 PP-1 (279)
150 2004 (32 days) 5 6-7-1 PP-3, PP-2, JD (279)

4. Discussion

Natural and rainfall-dominated flow regime watersheds with a reliable data range of 30 years of
daily weather and flow records were not abundant in the Ebro river watershed. These conditions were
not easily met and consequently, the data used in this study was limited to five gauging stations and
the period 1976–2005. Nevertheless, the selected gauging stations were located north and south of the
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main stream and include paired, nearby gauging stations. Models to fill eleven gaps representative of
different conditions of inter and intra-annual flow variability were built.

The variables used to build the models were purposely few, because Julian day and precipitation
data are considered the most important variables to make predictions on streamflow [2,23,51] and
they are usually available or easy to gather. Data availability is always an issue in this type of studies.
Existing data at gauging stations nearby, either upstream or downstream of the same watercourse,
are rarely available. Complex rainfall-runoff models can be built but they also require an abundance
of data, and watershed characteristics (such as soil and vegetation influence on water cycle) are not
always easily acquired.

Instead, we tested simple models based on generally available weather data and Julian day.
In many instances the cascade-correlation network models further reduced the number of variables in
order to improve training results; mainly precipitation values delayed 4 and 5 days from the gaps.
This fact backed our assessment of the influence of the relatively small size of most of the watersheds
and our selection of precipitation variables (previous 1–5 days) based on time of concentration and
trends in the data flow series.

Like in other hydrological problems [6,21–23,51], ANNs have proven their potential value for
modeling complex hydrological processes with limited data (variables), but the variability of the
Pearson r correlation values between observed and predicted outcomes under different scenarios and
gauging stations indicate that procedures cannot be generalized. Not all CCANN models performed
well enough for their intended in-filling gaps application, even with the advantages provided by this
algorithm compared to backpropagation, and by the GA used for selecting the best combination of
inputs as a preprocessing technique.

The results of the study suggested that there was not one single scenario suitable for filling up
gaps in all gauging stations, but the short-term S5 (two years before and after the gap) gave the best
results. Different scenarios would have to be tested, if applicable, but our approach seemed promising
if seasonal variability is accounted for and short periods before and after the gap are considered.
Using the full 30 years of data (S1) did not give satisfactory results which probably were related to
changes in water flow over the years, with higher variability more likely within longer time spans.
Gaps in low water flow periods apparently gave better modeling results, probably caused by a lower
variability in the data typical of these periods. High heterogeneity in the water flow data negatively
influenced the training of suitable models, like in case of GS-57 and GS-86 gauging stations, where
suitable models were not found for any scenario or gap. Future work may have to look into neural
network algorithms better suited to identify extreme values instead of general trends.

5. Conclusions

Our purpose was to complete discontinuous streamflow data series using a simple filling procedure
based on readily available variables. Cascade-correlation neural network models (CCANNs) were
built for the estimation of daily water flow in five gauging stations with rainfall-dominated natural
hydrological regime located in watersheds of the Ebro river. Models were based on Julian day and
precipitation variables from weather stations nearby. We explored the use of a 30-year database under
different conditions related to existing gaps in the five gauging stations. Scenarios were defined in
order to analyze the performance of the models in different conditions related to intra- and inter-annual
natural variability of flow regime as well as database length and characteristics. We concluded that
when seasonal variability is accounted for and short periods before and after the gap are considered,
CCANNs models can be a very useful predicting tool for filling gaps in streamflow series. No general
rule applied to all stations and gaps investigated, on the contrary, individual models had to be built for
individual gauging stations using the most appropriate scenario (database length and characteristics,
and variables included in the model) to provide best results for each flow series and gap. Models for
low water flow periods apparently performed better, probably because of the lower variability in the
data typical of these periods.
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