Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = dzud events

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4866 KiB  
Article
Central Asia Cold Case: Siberian Pine Fingers New Suspects in Growth Decline CA 1700 CE
by David M. Meko, Dina F. Zhirnova, Liliana V. Belokopytova, Yulia A. Kholdaenko, Elena A. Babushkina, Nariman B. Mapitov and Eugene A. Vaganov
Plants 2025, 14(2), 287; https://doi.org/10.3390/plants14020287 - 20 Jan 2025
Cited by 1 | Viewed by 930
Abstract
Tree-ring width chronologies of Pinus sibirica Du Tour from near the upper treeline in the Western Sayan, Southern Siberia are found to have an exceptional (below mean–3SD) multi-year drop near 1700 CE, highlighted by the seven narrowest-ring years in a 1524–2022 regional chronology [...] Read more.
Tree-ring width chronologies of Pinus sibirica Du Tour from near the upper treeline in the Western Sayan, Southern Siberia are found to have an exceptional (below mean–3SD) multi-year drop near 1700 CE, highlighted by the seven narrowest-ring years in a 1524–2022 regional chronology occurring in the short span of one decade. Tree rings are sometimes applied to reconstruct seasonal air temperatures; therefore, it is important to identify other factors that may have contributed to the growth suppression. The spatiotemporal scope of the “nosedive” in tree growth is investigated with a large network of P. sibirica (14 sites) and Larix sibirica Ledeb. (61 sites) chronologies, as well as with existing climatic reconstructions, natural archives, documentary evidence (e.g., earthquake records), and climate maps based on 20th-century reanalysis data. We conclude that stress from low summer temperatures in the Little Ice Age was likely exacerbated by tree damage associated with weather extremes, including infamous Mongolian “dzuds”, over 1695–1704. A tropical volcanic eruption in 1695 is proposed as the root cause of these disturbances through atmospheric circulation changes, possibly an amplified Scandinavia Northern Hemisphere teleconnection pattern. Conifer tree rings and forest productivity recorded this event across all of Altai–Sayan region. Full article
Show Figures

Figure 1

14 pages, 2756 KiB  
Article
Long-Term Response of Floodplain Meadow Normalized Difference Vegetation Index to Hydro-Climate and Grazing Pressure: Tamir River Plains, Mongolia
by Lkhaakhuu Nyamjav, Soninkhishig Nergui, Byambakhuu Gantumur, Munkhtsetseg Zorigt and Roland Jansson
Land 2024, 13(6), 781; https://doi.org/10.3390/land13060781 - 31 May 2024
Cited by 1 | Viewed by 1487
Abstract
The greenery of floodplain meadows in arid regions, such as Mongolia, is influenced by climate, hydrology, and land use. In this study, we analyzed the NDVI (Normalized Difference Vegetation Index) of two floodplain meadows located along the South Tamir and Tamir Rivers using [...] Read more.
The greenery of floodplain meadows in arid regions, such as Mongolia, is influenced by climate, hydrology, and land use. In this study, we analyzed the NDVI (Normalized Difference Vegetation Index) of two floodplain meadows located along the South Tamir and Tamir Rivers using LANDSAT images. Our goal was to observe NDVI spatial changes, variations, and mean values in mid-August every six years from 1991 to 2015 and to identify the factors driving these differences. To achieve this, we conducted variance analysis to identify changes in NDVI and implemented Principal Component Analysis to determine the influence of hydro-meteorological factors and grazing intensity. Our findings indicate a significant decrease in greenness, as measured by pixel-scale NDVI, during the late summer period. This decrease was consistently observed, except for a series of harsh winters that followed relatively dry summers, resulting in a disastrous event called dzud, which led to the death of livestock. The decrease in NDVI was amplified by lower precipitation in June, higher temperatures and wind speed in July, and increased precipitation in August, along with a higher frequency of days with convective rain. Our findings have important implications for managing grazing in Mongolia’s grasslands, promoting sustainable land use, and mitigating sandstorms. The variance and average values of NDVI at the pixel level can serve as reliable markers of sustainable pasture management in areas where other vegetation measures are limited. Full article
Show Figures

Figure 1

22 pages, 4326 KiB  
Article
Characteristics of Lake Sediment from Southwestern Mongolia and Comparison with Meteorological Data
by Uyangaa Udaanjargal, Noriko Hasebe, Davaadorj Davaasuren, Keisuke Fukushi, Yukiya Tanaka, Baasansuren Gankhurel, Nagayoshi Katsuta, Shinya Ochiai, Yoshiki Miyata and Tuvshin Gerelmaa
Geosciences 2022, 12(1), 7; https://doi.org/10.3390/geosciences12010007 - 24 Dec 2021
Cited by 5 | Viewed by 4303
Abstract
To understand how the climate system works in the continental interior, sediment cores that are approximately 30-cm long were taken from Olgoy, Boontsagaan, and Orog lakes, Mongolia. These cores were analyzed and compared with meteorological data (air temperature, precipitation, and wind) from climate [...] Read more.
To understand how the climate system works in the continental interior, sediment cores that are approximately 30-cm long were taken from Olgoy, Boontsagaan, and Orog lakes, Mongolia. These cores were analyzed and compared with meteorological data (air temperature, precipitation, and wind) from climate stations in the study area. Comparison of metrological data from four stations shows similar climate fluctuations. When the temperature was high, less precipitation occurred in general. The sedimentary features measured in this study were water content, organic matter, carbonate, amorphous silica contents, whole and mineral grain size, and grain density. Excess 210Pb measurements were used to estimate sedimentary ages. According to principal component analysis (PCA), temperature correlates well to sediment characteristics in Olgoy Lake. Whole and mineral grain sizes are coarser when the temperature is high, while the amorphous-silica concentration is lower. A coarse grain size is interpreted to reflect low lake levels due to evaporation under high temperature with less precipitation. Amorphous silica may be from surrounding plants and reflects less vegetation when the temperature is high. However, in the recent 30 years, after the social system changed and overgrazing became a problem, the amount of amorphous silica has positively correlated with temperature on a short time scale. In the past 30 years, with less vegetation, amorphous silica has mainly come from weathered mineral particles. High temperature caused a thick, weathered mantle for each mineral particle, resulting in high amorphous-silica concentration. In Boontsagaan Lake, whole and mineral grain sizes are coarser when the wind speed is increased. Low precipitation correlates with a decrease in organic matter and an increase in carbonate and amorphous silica. In Orog Lake, it is difficult to establish an age model due to dried-up events. Some fluctuations in sedimentary characteristics may correspond to extreme events, such as earthquakes, and natural hazards, such as dzuds (harsh winters). Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

25 pages, 7164 KiB  
Article
Extreme Climate Event and Its Impact on Landscape Resilience in Gobi Region of Mongolia
by Oyudari Vova, Martin Kappas, Tsolmon Renchin and Steven R. Fassnacht
Remote Sens. 2020, 12(18), 2881; https://doi.org/10.3390/rs12182881 - 5 Sep 2020
Cited by 6 | Viewed by 5497
Abstract
The dzud, a specific type of climate disaster in Mongolia, is responsible for serious environmental and economic damage. It is characterized by heavy snowfall and severe winter conditions, causing mass livestock deaths that occur through the following spring. These events substantially limit [...] Read more.
The dzud, a specific type of climate disaster in Mongolia, is responsible for serious environmental and economic damage. It is characterized by heavy snowfall and severe winter conditions, causing mass livestock deaths that occur through the following spring. These events substantially limit socioeconomic development in Mongolia. In this research, we conducted an analysis of several dzud events (2000, 2001, 2002, and 2010) to understand the spatial and temporal variability of vegetation conditions in the Gobi region of Mongolia. The present paper also establishes how these extreme climatic events affect vegetation cover and local grazing conditions using the seasonal aridity index (aAIZ), time-series Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI), and livestock data. We also correlated aAIZ, NDVI, and seasonal precipitation in the varied ecosystems of the study area. The results illustrate that under certain dzud conditions, rapid regeneration of vegetation can occur. A thick snow layer acting as a water reservoir combined with high livestock losses can lead to an increase of the maximum August NDVI. The Gobi steppe areas showed the highest degree of vulnerability to climate, with a drastic decline of grassland in humid areas. Another result is that snowy winters can cause a 10 to 20-day early peak in NDVI and a following increase in vegetation growth. During a drought year with dry winter conditions, the vegetation growth phase begins later due to water deficiency, which leads to weaker vegetation growth. Livestock loss and the reduction of grazing pressure play a crucial role in vegetation recovery after extreme climatic events in Mongolia. Full article
(This article belongs to the Special Issue Earth Observations for Ecosystem Resilience)
Show Figures

Figure 1

20 pages, 7308 KiB  
Article
Role of Surface Melt and Icing Events in Livestock Mortality across Mongolia’s Semi-Arid Landscape
by Caleb G. Pan, John S. Kimball, Munkhdavaa Munkhjargal, Nathaniel P. Robinson, Erik Tijdeman, Lucas Menzel and Peter B. Kirchner
Remote Sens. 2019, 11(20), 2392; https://doi.org/10.3390/rs11202392 - 16 Oct 2019
Cited by 9 | Viewed by 4860
Abstract
Livestock production is a socioeconomic linchpin in Mongolia and is affected by large-scale livestock die-offs. Colloquially known as dzuds, these die-offs are driven by anomalous climatic events, including extreme cold temperatures, extended snow cover duration (SCD) and drought. As average temperatures across [...] Read more.
Livestock production is a socioeconomic linchpin in Mongolia and is affected by large-scale livestock die-offs. Colloquially known as dzuds, these die-offs are driven by anomalous climatic events, including extreme cold temperatures, extended snow cover duration (SCD) and drought. As average temperatures across Mongolia have increased at roughly twice the global rate, we hypothesized that increasing cold season surface melt including soil freeze/thaw (FT), snowmelt, and icing events associated with regional warming have become increasingly important drivers of dzud events as they can reduce pasture productivity and inhibit access to grazing. Here, we use daily brightness temperature (Tb) observations to identify anomalous surface melt and icing events across Mongolia from 2003–2016 and their contribution to dzuds relative to other climatic drivers, including winter temperatures, SCD, and drought. We find a positive relationship between surface melt and icing events and livestock mortality during the fall in southern Mongolia and during the spring in the central and western regions. Further, anomalous seasonal surface melt and icing events explain 17–34% of the total variance in annual livestock mortality, with cold temperatures as the leading contributor of dzuds (20–37%). Summer drought showed the greatest explanatory power (43%) but overall had less statistically significant relationships relative to winter temperatures. Our results indicate that surface melt and icing events will become an increasingly important driver of dzuds as annual temperatures and livestock populations are projected to increase in Mongolia. Full article
(This article belongs to the Special Issue Recent Developments in Remote Sensing for Physical Geography)
Show Figures

Graphical abstract

Back to TopTop