Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = dynamic lens-imaging learning strategy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 4186 KiB  
Article
Comprehensive Adaptive Enterprise Optimization Algorithm and Its Engineering Applications
by Shuxin Wang, Yejun Zheng, Li Cao and Mengji Xiong
Biomimetics 2025, 10(5), 302; https://doi.org/10.3390/biomimetics10050302 - 9 May 2025
Cited by 1 | Viewed by 547
Abstract
In this study, a brand-new algorithm called the Comprehensive Adaptive Enterprise Development Optimizer (CAED) is proposed to overcome the drawbacks of the Enterprise Development (ED) algorithm in complex optimization tasks. In particular, it aims to tackle the problems of slow convergence and low [...] Read more.
In this study, a brand-new algorithm called the Comprehensive Adaptive Enterprise Development Optimizer (CAED) is proposed to overcome the drawbacks of the Enterprise Development (ED) algorithm in complex optimization tasks. In particular, it aims to tackle the problems of slow convergence and low precision. To enhance the algorithm’s ability to break free from local optima, a lens imaging reverse learning approach is incorporated. This approach creates reverse solutions by utilizing the concepts of optical imaging. As a result, it expands the search range and boosts the probability of finding superior solutions beyond local optima. Moreover, an environmental sensitivity-driven adaptive inertial weight approach is developed. This approach dynamically modifies the equilibrium between global exploration, which enables the algorithm to search for new promising areas in the solution space, and local development, which is centered on refining the solutions close to the currently best-found areas. To evaluate the efficacy of the CAED, 23 benchmark functions from CEC2005 are chosen for testing. The performance of the CAED is contrasted with that of nine other algorithms, such as the Particle Swarm Optimization (PSO), Gray Wolf Optimization (GWO), and the Antlion Optimizer (AOA). Experimental findings show that for unimodal functions, the standard deviation of the CAED is almost 0, which reflects its high accuracy and stability. In the case of multimodal functions, the optimal value obtained by the CAED is notably better than those of other algorithms, further emphasizing its outstanding performance. The CAED algorithm is also applied to engineering optimization challenges, like the design of cantilever beams and three-bar trusses. For the cantilever beam problem, the optimal solution achieved by the CAED is 13.3925, with a standard deviation of merely 0.0098. For the three-bar truss problem, the optimal solution is 259.805047, and the standard deviation is an extremely small 1.11 × 10−7. These results are much better than those achieved by the traditional ED algorithm and the other comparative algorithms. Overall, through the coordinated implementation of multiple optimization strategies, the CAED algorithm exhibits high precision, strong robustness, and rapid convergence when searching in complex solution spaces. As such, it offers an efficient approach for solving various engineering optimization problems. Full article
Show Figures

Figure 1

1 pages, 124 KiB  
Correction
Correction: Alanazi et al. An Improved Fick’s Law Algorithm Based on Dynamic Lens-Imaging Learning Strategy for Planning a Hybrid Wind/Battery Energy System in Distribution Network. Mathematics 2023, 11, 1270
by Mohana Alanazi, Abdulaziz Alanazi, Ahmad Almadhor and Hafiz Tayyab Rauf
Mathematics 2025, 13(7), 1206; https://doi.org/10.3390/math13071206 - 7 Apr 2025
Viewed by 208
Abstract
In the published publication [...] Full article
13 pages, 480 KiB  
Review
Applications of Machine Learning-Driven Molecular Models for Advancing Ophthalmic Precision Medicine
by Rahul Kumar, Joshua Ong, Ethan Waisberg, Ryung Lee, Tuan Nguyen, Phani Paladugu, Maria Chiara Rivolta, Chirag Gowda, John Vincent Janin, Jeremy Saintyl, Dylan Amiri, Ansh Gosain and Ram Jagadeesan
Bioengineering 2025, 12(2), 156; https://doi.org/10.3390/bioengineering12020156 - 6 Feb 2025
Viewed by 1491
Abstract
Ophthalmic diseases such as glaucoma, age-related macular degeneration (ARMD), and optic neuritis involve complex molecular and cellular disruptions that challenge current diagnostic and therapeutic approaches. Advanced artificial intelligence (AI) and machine learning (ML) models offer a novel lens to analyze these diseases by [...] Read more.
Ophthalmic diseases such as glaucoma, age-related macular degeneration (ARMD), and optic neuritis involve complex molecular and cellular disruptions that challenge current diagnostic and therapeutic approaches. Advanced artificial intelligence (AI) and machine learning (ML) models offer a novel lens to analyze these diseases by integrating diverse datasets, identifying patterns, and enabling precision medicine strategies. Over the past decade, applications of AI in ophthalmology have expanded from imaging-based diagnostics to molecular-level modeling, bridging critical gaps in understanding disease mechanisms. This paper systematically reviews the application of AI-driven methods, including reinforcement learning (RL), graph neural networks (GNNs), Bayesian inference, and generative adversarial networks (GANs), in the context of these ophthalmic conditions. RL models simulate transcription factor dynamics in hypoxic or inflammatory environments, offering insights into disrupted molecular pathways. GNNs map intricate molecular networks within affected tissues, identifying key inflammatory or degenerative drivers. Bayesian inference provides probabilistic models for predicting disease progression and response to therapies, while GANs generate synthetic datasets to explore therapeutic interventions. By contextualizing these AI tools within the broader framework of ophthalmic disease management, this review highlights their potential to transform diagnostic precision and therapeutic outcomes. Ultimately, this work underscores the need for continued interdisciplinary collaboration to harness AI’s potential in advancing the field of ophthalmology and improving patient care. Full article
(This article belongs to the Special Issue Translational AI and Computational Tools for Ophthalmic Disease)
Show Figures

Figure 1

34 pages, 5924 KiB  
Article
A Multi-Strategy Improved Honey Badger Algorithm for Engineering Design Problems
by Tao Han, Tingting Li, Quanzeng Liu, Yourui Huang and Hongping Song
Algorithms 2024, 17(12), 573; https://doi.org/10.3390/a17120573 - 13 Dec 2024
Cited by 3 | Viewed by 1058
Abstract
A multi-strategy improved honey badger algorithm (MIHBA) is proposed to address the problem that the honey badger algorithm may fall into local optimum and premature convergence when dealing with complex optimization problems. By introducing Halton sequences to initialize the population, the diversity of [...] Read more.
A multi-strategy improved honey badger algorithm (MIHBA) is proposed to address the problem that the honey badger algorithm may fall into local optimum and premature convergence when dealing with complex optimization problems. By introducing Halton sequences to initialize the population, the diversity of the population is enhanced, and premature convergence is effectively avoided. The dynamic density factor of water waves is added to improve the search efficiency of the algorithm in the solution space. Lens opposition learning based on the principle of lens imaging is also introduced to enhance the ability of the algorithm to get rid of local optimums. MIHBA achieves the best ranking in 23 test functions and 4 engineering design problems. The improvement of this paper improves the convergence speed and accuracy of the algorithm, enhances the adaptability and solving ability of the algorithm to complex functions, and provides new ideas for solving complex engineering design problems. Full article
Show Figures

Figure 1

22 pages, 7856 KiB  
Article
Short-Term Electricity Load Forecasting Based on Improved Data Decomposition and Hybrid Deep-Learning Models
by Jiayu Chen, Lisang Liu, Kaiqi Guo, Shurui Liu and Dongwei He
Appl. Sci. 2024, 14(14), 5966; https://doi.org/10.3390/app14145966 - 9 Jul 2024
Cited by 10 | Viewed by 2075
Abstract
Short-term power load forecasting plays a key role in daily scheduling and ensuring stable power system operation. The problem of the volatility of the power load sequence and poor prediction accuracy is addressed. In this study, a learning model integrating intelligent optimization algorithms [...] Read more.
Short-term power load forecasting plays a key role in daily scheduling and ensuring stable power system operation. The problem of the volatility of the power load sequence and poor prediction accuracy is addressed. In this study, a learning model integrating intelligent optimization algorithms is proposed, which combines an ensemble-learning model based on long short-term memory (LSTM), variational modal decomposition (VMD) and the multi-strategy optimization dung beetle algorithm (MODBO). The aim is to address the shortcomings of the dung beetle optimizer algorithm (DBO) in power load forecasting, such as its time-consuming nature, low accuracy, and ease of falling into local optimum. In this paper, firstly, the dung beetle algorithm is initialized using a lens-imaging reverse-learning strategy to avoid premature convergence of the algorithm. Second, a spiral search strategy is used to update the dynamic positions of the breeding dung beetles to balance the local and global search capabilities. Then, the positions of the foraging dung beetles are updated using an optimal value bootstrapping strategy to avoid falling into a local optimum. Finally, the dynamic-weighting coefficients are used to update the position of the stealing dung beetle to improve the global search ability and convergence of the algorithm. The proposed new algorithm is named MVMO-LSTM. Compared to traditional intelligent algorithms, the four-quarter averages of the RMSE, MAE and R2 of MVMO-LSTM are improved by 0.1147–0.7989 KW, 0.09799–0.6937 KW, and 1.00–13.05%, respectively. The experimental results show that the MVMO-LSTM proposed in this paper not only solves the shortcomings of the DBO but also enhances the stability, global optimization capability and information utilization of the model. Full article
Show Figures

Figure 1

21 pages, 3795 KiB  
Article
An Improved Artificial Ecosystem-Based Optimization Algorithm for Optimal Design of a Hybrid Photovoltaic/Fuel Cell Energy System to Supply A Residential Complex Demand: A Case Study for Kuala Lumpur
by Jing Yang, Yen-Lin Chen, Por Lip Yee, Chin Soon Ku and Manoochehr Babanezhad
Energies 2023, 16(6), 2867; https://doi.org/10.3390/en16062867 - 20 Mar 2023
Cited by 6 | Viewed by 2373
Abstract
In this paper, the optimal design of a hybrid energy system (HES), consisting of photovoltaic technology integrated with fuel cells (HPV/FC) and relying on hydrogen storage, is performed to meet the annual demand of a residential complex to find the minimum total net [...] Read more.
In this paper, the optimal design of a hybrid energy system (HES), consisting of photovoltaic technology integrated with fuel cells (HPV/FC) and relying on hydrogen storage, is performed to meet the annual demand of a residential complex to find the minimum total net present cost (TNPC), while observing the reliability constraint as the energy-not-supplied probability (ENSP) and considering real meteorological data of the Kuala Lumpur city in Malaysia. The decision variables include the size of system components, which are optimally determined by an improved artificial ecosystem-based optimization algorithm (IAEO). The conventional AEO is improved using the dynamic lens-imaging learning strategy (DLILS) to prevent premature convergence. The results demonstrated that the decrease (increase) of the reliability constraint leads to an increase (decrease) in the TNPC, as well as the cost of electricity (COE). For a maximum reliability constraint of 5%, the results show that the TNPC and COE obtained USD 2.247 million and USD 0.4046 million, respectively. The superior performance of the IAEO has been confirmed with the AEO, particle swarm optimization (PSO), and manta ray foraging optimization (MRFO), with the lowest TNPC and higher reliability. In addition, the effectiveness of the hydrogen tank efficiency and load changes is confirmed in the hybrid system design. Full article
(This article belongs to the Special Issue Hybrid-Renewable Energy Systems in Microgrids)
Show Figures

Figure 1

30 pages, 7582 KiB  
Article
An Improved Fick’s Law Algorithm Based on Dynamic Lens-Imaging Learning Strategy for Planning a Hybrid Wind/Battery Energy System in Distribution Network
by Mohana Alanazi, Abdulaziz Alanazi, Ahmad Almadhor and Hafiz Tayyab Rauf
Mathematics 2023, 11(5), 1270; https://doi.org/10.3390/math11051270 - 6 Mar 2023
Cited by 10 | Viewed by 2258 | Correction
Abstract
In this paper, optimal and multi-objective planning of a hybrid energy system (HES) with wind turbine and battery storage (WT/Battery) has been proposed to drop power loss, smooth voltage profile, enhance customers reliability, as well as minimize the net present cost of the [...] Read more.
In this paper, optimal and multi-objective planning of a hybrid energy system (HES) with wind turbine and battery storage (WT/Battery) has been proposed to drop power loss, smooth voltage profile, enhance customers reliability, as well as minimize the net present cost of the hybrid system plus the battery degradation cost (BDC). Decision variables include the installation site of the hybrid system and size of the wind farm and battery storage. These variables are found with the help of a novel metaheuristic approach called improved Fick’s law algorithm (IFLA). To enhance the exploration performance and avoid the early incomplete convergence of the conventional Fick’s law (FLA) algorithm, a dynamic lens-imaging learning strategy (DLILS) based on opposition learning has been adopted. The planning problem has been implemented in two approaches without and considering BDC to analyze its impact on the reserve power level and the amount and quality of power loss, voltage profile, and reliability. A 33-bus distribution system has also been employed to validate the capability and efficiency of the suggested method. Simulation results have shown that the multi-objective planning of the hybrid WT/Battery energy system improves voltage and reliability and decreases power loss by managing the reserve power based on charging and discharging battery units and creating electrical planning with optimal power injection into the network. The results of simulations and evaluation of statistic analysis indicate the superiority of the IFLA in achieving the optimal solution with faster convergence than conventional FLA, particle swarm optimization (PSO), manta ray foraging optimizer (MRFO), and bat algorithm (BA). It has been observed that the proposed methodology based on IFLA in different approaches has obtained lower power loss and more desirable voltage profile and reliability than its counterparts. Simulation reports demonstrate that by considering BDC, the values of losses and voltage deviations are increased by 2.82% and 1.34%, respectively, and the reliability of network customers is weakened by 5.59% in comparison with a case in which this cost is neglected. Therefore, taking into account this parameter in the objective function can lead to the correct and real calculation of the improvement rate of each of the objectives, especially the improvement of the reliability level, as well as making the correct decisions of network planners based on these findings. Full article
Show Figures

Figure 1

Back to TopTop