Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = dual-type flexible-film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2858 KiB  
Article
Triple Design Strategy for Quinoxaline-Based Hole Transport Materials in Flexible Perovskite Solar Cells
by Yuanqiong Lin, Zeyuan Gao, Xiaoshang Zhong, Yinghua Lu, Song Tu and Xin Li
Molecules 2025, 30(5), 1129; https://doi.org/10.3390/molecules30051129 - 28 Feb 2025
Viewed by 850
Abstract
Molecular design strategies such as noncovalent conformational locks, self-assembly, and D-A molecular skeletons have been extensively used to devise efficient and stable hole transport materials. Nevertheless, most of the existing excellent examples involve only single or dual strategies, and triple strategies remain scarcely [...] Read more.
Molecular design strategies such as noncovalent conformational locks, self-assembly, and D-A molecular skeletons have been extensively used to devise efficient and stable hole transport materials. Nevertheless, most of the existing excellent examples involve only single or dual strategies, and triple strategies remain scarcely reported. Herein, we attempt to develop two quinoxaline-based hole transport materials (DQC-T and DQ-T-QD) through a triple strategy encompassing an S···N noncovalent conformational lock, D-A molecular skeletons, and self-assembly or conjugate engineering. The S···N noncovalent conformational lock formed by thiophene sulfur atoms and quinoxaline nitrogen atoms improves molecular planarity, further inducing the formation of high-quality perovskite films and enhancing hole transport ability; the asymmetric D-A molecular backbone endows the material with a larger dipole moment (μ = 5.80 D) to promote intramolecular charge transfer; and the carboxyl group, methoxy, and sulfur atom establish strong interactions between the NiOx and perovskite layers, including self-assembly and defect passivation, which mitigates the occurrence of detrimental interfacial charge recombination and reactions. Thus, the 2-thiophenecarboxylic acid derivative DQC-T, featuring an asymmetric D-A molecular backbone, exhibits superiority in terms of good interface contact, hole extraction, and transport compared to DQ-T-QD with a D-A-π-A-D type structure. Naturally, the optimal power conversion efficiency of NiOx/DQC-T-based p-i-n flexible perovskite solar cells is 18.12%, surpassing that of NiOx/DQ-T-QD-based devices (16.67%) and NiOx-based devices with or without DQC (a benzoic acid derivative without a noncovalent conformational lock) as co-HTMs (16.75% or 15.52%). Our results reflect the structure–performance relationship well, and provide a referable triple strategy for the design of new hole transport materials. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

19 pages, 4820 KiB  
Article
Fluorescent Aromatic Polyether Sulfones: Processable, Scalable, Efficient, and Stable Polymer Emitters and Their Single-Layer Polymer Light-Emitting Diodes
by Konstantinos C. Andrikopoulos, Despoina Tselekidou, Charalampos Anastasopoulos, Kyparisis Papadopoulos, Vasileios Kyriazopoulos, Stergios Logothetidis, Joannis K. Kallitsis, Maria Gioti and Aikaterini K. Andreopoulou
Nanomaterials 2024, 14(15), 1246; https://doi.org/10.3390/nano14151246 - 25 Jul 2024
Cited by 1 | Viewed by 1711
Abstract
In this study, fully aromatic polyether sulfones were developed, bearing blue, yellow, and orange–red π-conjugated semiconducting units. Carbazole-, anthracene-, and benzothiadiazole-based fluorophores are copolymerized with a diphenylsulfone moiety. A diphenylpyridine comonomer was additionally utilized, acting as both a solubilizing unit and a weak [...] Read more.
In this study, fully aromatic polyether sulfones were developed, bearing blue, yellow, and orange–red π-conjugated semiconducting units. Carbazole-, anthracene-, and benzothiadiazole-based fluorophores are copolymerized with a diphenylsulfone moiety. A diphenylpyridine comonomer was additionally utilized, acting as both a solubilizing unit and a weak blue fluorescent group. Using this rationale, fluorescent polyarylethers with high molecular weights, up to 70 kDa, were developed, showing film formation ability and high thermal stability, while preserving excellent solubility in common organic, nonvolatile, and nonchlorinated solvents. Fine-tuning of the emission color was achieved through subtle changes of the comonomers’ type and ratio. Single-chromophore-bearing copolymers emitted in the blue or the yellow region of the visible spectrum, while the dual-chromophore-bearing terpolymers emitted throughout the visible spectrum, resulting in white light emission. Solutions of 20 wt% in polar aprotic solvents at ambient conditions allowed the deposition of fluorescent copolyethers and printing from non-chlorinated solvents. All polyethers were evaluated for their structural and optoelectronic properties, and selected copolymers were successfully used in the emitting layer (EML) of organic light-emitting diode (OLED) devices, using either rigid or flexible substrates. Remarkable color stability was displayed in all cases for up to 15 V of bias voltage. The Commission Internationale de L’Eclairage (CIE) of the fabricated devices is located in the blue (0.16, 0.16), yellow (0.44, 0.50), or white region of the visible spectrum (0.33, 0.38) with minimal changes according to the ratio of the comonomers. The versatile methodology toward semiconducting polyethersulfones for polymer light-emitting diodes (PLEDs) developed herein led to the scaled-up production of luminescent polymers of up to 25 g of high-molecular-weight single batches, demonstrating the effectiveness of this approach as a straightforward tool to facilitate the synthesis of flexible and printable EMLs for large-area PLED coverage. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

14 pages, 5642 KiB  
Article
Data-Driven Contact-Based Thermosensation for Enhanced Tactile Recognition
by Tiancheng Ma and Min Zhang
Sensors 2024, 24(2), 369; https://doi.org/10.3390/s24020369 - 8 Jan 2024
Viewed by 1814
Abstract
Thermal feedback plays an important role in tactile perception, greatly influencing fields such as autonomous robot systems and virtual reality. The further development of intelligent systems demands enhanced thermosensation, such as the measurement of thermal properties of objects to aid in more accurate [...] Read more.
Thermal feedback plays an important role in tactile perception, greatly influencing fields such as autonomous robot systems and virtual reality. The further development of intelligent systems demands enhanced thermosensation, such as the measurement of thermal properties of objects to aid in more accurate system perception. However, this continues to present certain challenges in contact-based scenarios. For this reason, this study innovates by using the concept of semi-infinite equivalence to design a thermosensation system. A discrete transient heat transfer model was established. Subsequently, a data-driven method was introduced, integrating the developed model with a back propagation (BP) neural network containing dual hidden layers, to facilitate accurate calculation for contact materials. The network was trained using the thermophysical data of 67 types of materials generated by the heat transfer model. An experimental setup, employing flexible thin-film devices, was constructed to measure three solid materials under various heating conditions. Results indicated that measurement errors stayed within 10% for thermal conductivity and 20% for thermal diffusion. This approach not only enables quick, quantitative calculation and identification of contact materials but also simplifies the measurement process by eliminating the need for initial temperature adjustments, and minimizing errors due to model complexity. Full article
(This article belongs to the Special Issue The Advanced Flexible Electronic Devices)
Show Figures

Figure 1

22 pages, 4336 KiB  
Article
Novel Rigidochromic and Anti-Kasha Dual Emission Fluorophores Based on D-π-A Dyads as the Promising Materials for Potential Applications Ranging from Optoelectronics and Optical Sensing to Biophotonics and Medicine
by Svetlana A. Lermontova, Maxim V. Arsenyev, Anton V. Cherkasov, Georgy K. Fukin, Andrey V. Afanasyev, Andrey V. Yudintsev, Ilya S. Grigoryev, Elena Yu. Ladilina, Tatyana S. Lyubova, Natalia Yu. Shilyagina, Irina V. Balalaeva, Larisa G. Klapshina and Alexandr V. Piskunov
Int. J. Mol. Sci. 2023, 24(6), 5818; https://doi.org/10.3390/ijms24065818 - 18 Mar 2023
Cited by 6 | Viewed by 2644
Abstract
Today we see an increasing demand for new fluorescent materials exhibiting various sensory abilities due to their broad applicability ranging from the construction of flexible devices to bioimaging. In this paper, we report on the new fluorescent pigments AntTCNE, PyrTCNE, and PerTCNE which [...] Read more.
Today we see an increasing demand for new fluorescent materials exhibiting various sensory abilities due to their broad applicability ranging from the construction of flexible devices to bioimaging. In this paper, we report on the new fluorescent pigments AntTCNE, PyrTCNE, and PerTCNE which consist of 3–5 fused aromatic rings substituted with tricyanoethylene fragments forming D-π-A diad. Our studies reveal that all three compounds exhibit pronounced rigidochromic properties, i.e., strong sensitivity of their fluorescence to the viscosity of the local environment. We also demonstrate that our new pigments belong to a very rare type of organic fluorophores which do not obey the well-known empirical Kasha’rule stating that photoluminescence transition always occurs from the lowest excited state of an emitting molecule. This rare spectral feature of our pigments is accompanied by an even rarer capability of spectrally and temporally well-resolved anti-Kasha dual emission (DE) from both higher and lowest electronic states in non-polar solvents. We show that among three new pigments, PerTCNE has significant potential as the medium-bandgap non-fullerene electron acceptor. Such materials are now highly demanded for indoor low-power electronics and portable devices for the Internet-of-Things. Additionally, we demonstrate that PyrTCNE has been successfully used as a structural unit in template assembling of the new cyanoarylporphyrazine framework with 4 D-π-A dyads framing this macrocycle (Pyr4CN4Pz). Similarly to its structural unit, Pyr4CN4Pz is also the anti-Kasha fluorophore, exhibiting intensive DE in viscous non-polar medium and polymer films, which strongly depends on the polarity of the local environment. Moreover, our studies showed high photodynamic activity of this new tetrapyrrole macrocycle which is combined with its unique sensory capacities (strong sensitivity of its fluorescent properties to the local environmental stimuli such as viscosity and polarity. Thus, Pyr4CN4Pz can be considered the first unique photosensitizer that potentially enables the real-time combination of photodynamic therapy and double-sensory approaches which is very important for modern biomedicine. Full article
Show Figures

Figure 1

9 pages, 2250 KiB  
Article
Dual-Type Flexible-Film Thermoelectric Generators Using All-Carbon Nanotube Films
by Ryota Konagaya and Masayuki Takashiri
Coatings 2023, 13(1), 209; https://doi.org/10.3390/coatings13010209 - 16 Jan 2023
Cited by 12 | Viewed by 3498
Abstract
The long-term stability of n-type single-walled carbon nanotubes (SWCNTs) in air makes all-carbon thermoelectric generators (TEGs) viable. To increase the performance of TEGs, we developed a dual-type flexible-film thermoelectric generator (DFTEG). The vacuum filtering was used to form p- and n-type SWCNT films [...] Read more.
The long-term stability of n-type single-walled carbon nanotubes (SWCNTs) in air makes all-carbon thermoelectric generators (TEGs) viable. To increase the performance of TEGs, we developed a dual-type flexible-film thermoelectric generator (DFTEG). The vacuum filtering was used to form p- and n-type SWCNT films from ethanol-based dispersion and water-based solutions with cationic surfactant, respectively. DFTEGs were fabricated as follows: strip-shaped p- and n-type SWCNT films were attached on the top and back sides of a polyimide substrate, respectively, and were connected alternately in series by bending copper tapes on the edge of the polyimide substrate. The thermoelectric performance was measured after attaching the DFTEG outside a beaker full of water, where the water surface reached the center of the DFTEG. For a 10 mm long film and 15 p-n pairs, the DFTEG had an output voltage of 40 mV and a maximum power of 891 nW at a temperature difference of 25 K. The measured thermoelectric performance was significantly higher than that of the single-type TEG for almost the same SWCNT films. This result demonstrates that thermoelectric performance can be improved by using DFTEGs that are fabricated with optimum structural designs. Full article
(This article belongs to the Collection Feature Paper Collection in Thin Films)
Show Figures

Figure 1

Back to TopTop