Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (66)

Search Parameters:
Keywords = double steel tubes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 8184 KiB  
Article
Experimental and Mechanism Study on Axial Compressive Performance of Double Steel Tube Columns Filled with Recycled Concrete Containing Abandoned Brick Aggregate
by Yuanyuan Sun, Dongxu Hou, Yanbiao Shi, Yamei Sun, Fancheng Meng and Dong Chen
Buildings 2025, 15(14), 2424; https://doi.org/10.3390/buildings15142424 - 10 Jul 2025
Viewed by 250
Abstract
Recycled concrete is widely recognized as favorable for environmental protection and sustainable development. However, recycled concrete, especially containing abandoned brick aggregate, is rarely used in main structural members due to its inherent defects. Concrete-filled double steel tube columns (CFDSTCs), consisting of an outer [...] Read more.
Recycled concrete is widely recognized as favorable for environmental protection and sustainable development. However, recycled concrete, especially containing abandoned brick aggregate, is rarely used in main structural members due to its inherent defects. Concrete-filled double steel tube columns (CFDSTCs), consisting of an outer and an inner steel tube with concrete filling the entire section, are effective in load bearing and deformation resistance. The structural application of abandoned brick aggregate, resulting from urbanization renewal, might be widened through CFDSTCs. This paper presents an experimental and analytical study aiming to investigate the axial compressive behavior of recycled-brick-aggregate-concrete-filled double steel tube columns (RBCDSTs). A total of six specimens were tested under concentric compression, including five RBCDSTs and one concrete-filled single steel tube column. The varied parameters included the replacement ratios (0% and 25%) of brick aggregate and the thickness ratio of the inner and outer steel tubes (0.75, 1, and 1.25). Theoretical analysis was also carried out. A new constitutive model of RBCDST was proposed and used in finite element analysis. The investigation indicated that, under the current conditions, the presence of the inner steel tube only increased the strength by 0.14%. When the inner and outer diameter ratio is 0.73, using a 25% replacement rate of bricks in the entire cross-section or only in the ring area of the cross-section will result in 21.1% and 10.1% strength decreases, respectively. For every 0.6% increase in the diameter-to-thickness ratio of the outer tube, the strength of RBCDST increases 16.3% on average. Full article
Show Figures

Figure 1

45 pages, 1606 KiB  
Review
A Comprehensive Review of Geothermal Heat Pump Systems
by Khaled Salhein, Sabriya Alghennai Salheen, Ahmed M. Annekaa, Mansour Hawsawi, Edrees Yahya Alhawsawi, C. J. Kobus and Mohamed Zohdy
Processes 2025, 13(7), 2142; https://doi.org/10.3390/pr13072142 - 5 Jul 2025
Viewed by 487
Abstract
Geothermal heat pump systems (GHPSs) offer a sustainable and energy-efficient solution for heating and cooling buildings. Ground heat exchanger (GHE) design and configuration significantly impact on the overall performance and installation expenses of geothermal heat pump systems. This paper presents a comprehensive analysis [...] Read more.
Geothermal heat pump systems (GHPSs) offer a sustainable and energy-efficient solution for heating and cooling buildings. Ground heat exchanger (GHE) design and configuration significantly impact on the overall performance and installation expenses of geothermal heat pump systems. This paper presents a comprehensive analysis of GHPSs, focusing on their advantages, disadvantages, key components, types, and particularly the various closed-loop GHE configurations. Detailed comparisons highlight how different designs affect thermal performance and installation costs. The findings reveal that helical GHEs offer superior thermal efficiency with reduced drilling requirements and cost savings, while coaxial GHEs, especially those using steel tubes, enhance heat transfer and enable shorter boreholes. Cost-effective options like W-type GHEs provide performance comparable to more complex systems. Additionally, triple U-tube and spiral configurations balance high efficiency with economic feasibility. The single and double U-tube remain the most common borehole geometry, though coaxial designs present distinct advantages in targeted scenarios. These insights support the optimization of vertical GHEs, advancing system performance, cost-effectiveness, and long-term sustainability in GHPS applications. Full article
(This article belongs to the Special Issue Application of Refrigeration and Heat Pump Technology)
Show Figures

Graphical abstract

22 pages, 3703 KiB  
Article
Seismic Performance of Recycled Aggregate Concrete-Filled Steel Tube Column–Composite Beam Frames with Column-End Stirrup Confinement
by Zhi Yang, Xingnian Chen, Hongchang Xu, Baoye Hui, Jia Huang, Liping Wang, Said Ikram Sadat and Faxing Ding
Materials 2025, 18(11), 2458; https://doi.org/10.3390/ma18112458 - 23 May 2025
Viewed by 491
Abstract
The application of recycled concrete in building structures can not only effectively reduce the generation of construction waste and reduce the excessive dependence on natural aggregates but can also promote the sustainable use of resources and meet the national “double carbon” strategic requirements. [...] Read more.
The application of recycled concrete in building structures can not only effectively reduce the generation of construction waste and reduce the excessive dependence on natural aggregates but can also promote the sustainable use of resources and meet the national “double carbon” strategic requirements. This study investigates the effect of the recycled aggregate replacement ratio on the seismic performance of concrete-filled steel tube column–composite beam frames. Five finite element models were developed, considering varying recycled aggregate replacement ratios and the presence or absence of column-end stirrup-confined reinforcement. Dynamic response analyses were conducted. The results reveal that replacing natural aggregates with recycled aggregates reduces the stiffness of concrete-filled steel tube columns by weakening the core concrete, negatively impacting seismic performance and increasing structural stiffness damage. Column-end stirrup-confined reinforcement reduces interface slip between the core concrete and the steel tube by directly restraining the core concrete, thereby enhancing the bending stiffness of the concrete-filled steel tube column and improving the seismic performance of the structure. The seismic performance of recycled concrete frames with column-end stirrup-confined reinforcement is superior to that of conventional concrete frames, demonstrating that column-end reinforcement can effectively mitigate the adverse effects of recycled aggregate replacement on the structure’s seismic performance. Full article
(This article belongs to the Special Issue Advances in Modern Cement-Based Materials for Composite Structures)
Show Figures

Figure 1

35 pages, 13152 KiB  
Article
Prediction of Member Forces of Steel Tubes on the Basis of a Sensor System with the Use of AI
by Haiyu Li and Heungjin Chung
Sensors 2025, 25(3), 919; https://doi.org/10.3390/s25030919 - 3 Feb 2025
Cited by 1 | Viewed by 948
Abstract
The rapid development of AI (artificial intelligence), sensor technology, high-speed Internet, and cloud computing has demonstrated the potential of data-driven approaches in structural health monitoring (SHM) within the field of structural engineering. Algorithms based on machine learning (ML) models are capable of discerning [...] Read more.
The rapid development of AI (artificial intelligence), sensor technology, high-speed Internet, and cloud computing has demonstrated the potential of data-driven approaches in structural health monitoring (SHM) within the field of structural engineering. Algorithms based on machine learning (ML) models are capable of discerning intricate structural behavioral patterns from real-time data gathered by sensors, thereby offering solutions to engineering quandaries in structural mechanics and SHM. This study presents an innovative approach based on AI and a fiber-reinforced polymer (FRP) double-helix sensor system for the prediction of forces acting on steel tube members in offshore wind turbine support systems; this enables structural health monitoring of the support system. The steel tube as the transitional member and the FRP double helix-sensor system were initially modeled in three dimensions using ABAQUS finite element software. Subsequently, the data obtained from the finite element analysis (FEA) were inputted into a fully connected neural network (FCNN) model, with the objective of establishing a nonlinear mapping relationship between the inputs (strain) and the outputs (reaction force). In the FCNN model, the impact of the number of input variables on the model’s predictive performance is examined through cross-comparison of different combinations and positions of the six sets of input variables. And based on an evaluation of engineering costs and the number of strain sensors, a series of potential combinations of variables are identified for further optimization. Furthermore, the potential variable combinations were optimized using a convolutional neural network (CNN) model, resulting in optimal input variable combinations that achieved the accuracy level of more input variable combinations with fewer sensors. This not only improves the prediction performance of the model but also effectively controls the engineering cost. The model performance was evaluated using several metrics, including R2, MSE, MAE, and SMAPE. The results demonstrated that the CNN model exhibited notable advantages in terms of fitting accuracy and computational efficiency when confronted with a limited data set. To provide further support for practical applications, an interactive graphical user interface (GUI)-based sensor-coupled mechanical prediction system for steel tubes was developed. This system enables engineers to predict the member forces of steel tubes in real time, thereby enhancing the efficiency and accuracy of SHM for offshore wind turbine support systems. Full article
(This article belongs to the Section Sensors Development)
Show Figures

Figure 1

17 pages, 3548 KiB  
Article
A Comprehensive Assessment of the Economic Performance of an Innovative Solar Thermal System: A Case Study
by Lisa Gobio-Thomas, Mohamed Darwish, Antonio Rovira, Ruben Abbas, Magdalena Barnetche, Juan Pedro Solano, Albert Torres, Krzysztof Naplocha, Peter Kew and Valentina Stojceska
Sustainability 2025, 17(2), 455; https://doi.org/10.3390/su17020455 - 9 Jan 2025
Cited by 1 | Viewed by 1108
Abstract
An economic assessment of an innovative solar thermal system called Application to Solar Thermal Energy to Processes (ASTEP) was conducted. It considered its three main subsystems: a novel rotary Fresnel SunDial, Thermal Energy Storage (TES) and Control System. Current Fresnel collectors are unable [...] Read more.
An economic assessment of an innovative solar thermal system called Application to Solar Thermal Energy to Processes (ASTEP) was conducted. It considered its three main subsystems: a novel rotary Fresnel SunDial, Thermal Energy Storage (TES) and Control System. Current Fresnel collectors are unable to provide thermal energy above 150 °C in high-latitude locations. Therefore, the key contribution of this study is the assessment of the economic performance of the ASTEP system used to provide high-temperature process heat up to 400 °C for industries located at low and high latitudes. The ASTEP system is installed at two end-users: Mandrekas (MAND), a dairy factory located in Greece at a latitude of 37.93 N and ArcelorMittal (AMTP), a manufacturer of steel tubes located in Romania at a latitude of 47.1 N. The life cycle costs (LCC), levelised cost of energy (LCOE), energy cost savings, EU carbon cost savings and benefit–cost ratio (BCR) of the ASTEP system were assessed. The results showed that AMTP’s ASTEP system had higher LCC and LCOE than MAND. This can be attributed to the use of two TES tanks and a double-axis solar tracking system for AMTP’s ASTEP system due to its high latitude location, compared to a single TES tank and single-axis solar tracking system used for MAND at low latitude. The total financial savings of the ASTEP system were EUR 249,248 for MAND and EUR 262,931 for AMTP over a period of 30 years. This study demonstrates that the ASTEP system offers financial benefits through its energy and EU carbon cost savings for industries at different latitudes while enhancing their environmental sustainability. Full article
Show Figures

Figure 1

21 pages, 12806 KiB  
Article
Axial Compressive Behavior of Outer Square Inner Circular Spontaneous Combustion Coal Gangue Concrete-Filled Double-Skin Steel Tubular Stub Column
by Jinli Wang, Chunyuan Wang, Zhe Gao, Haoyan Wei, Zhengping Hu and Weiwei Wang
Buildings 2024, 14(12), 4064; https://doi.org/10.3390/buildings14124064 - 21 Dec 2024
Viewed by 664
Abstract
Utilizing crushed spontaneous combustion coal gangue as a coarse aggregate in concrete preparation effectively reduces reliance on natural resources and mitigates environmental pollution; however, the suboptimal workability of spontaneous combustion coal gangue coarse aggregate concrete (SCG-CAC) limits its engineering applications. To address this [...] Read more.
Utilizing crushed spontaneous combustion coal gangue as a coarse aggregate in concrete preparation effectively reduces reliance on natural resources and mitigates environmental pollution; however, the suboptimal workability of spontaneous combustion coal gangue coarse aggregate concrete (SCG-CAC) limits its engineering applications. To address this issue, this study places SCGCAC at the center of a CFDST (Concrete-Filled Double-Skin Steel Tubular) stub column. Through finite element modeling validated for reliability, this study examines the structural mechanical response to axial loading, along with the effects of various parameters. The analysis encompasses parameters such as the strength of the core SCGCAC (fc,i), the strength of the sandwiched concrete (fc,o), the yield strength of the outer steel tube (fy,o), the yield strength of the inner steel tube (fy,i), the width-to-thickness ratio (B/to), the diameter-to-thickness ratio of the inner tube (D/ti), and the diameter-to-width ratio of the outer tube (D/B). Results show that this structural configuration significantly enhances the core SCGCAC ultimate bearing capacity, and increases in D/ti, fc,i, fc,o, fy,i, and B/to all lead to an increase in the peak load. Particularly, when D/ti increases from 28.57 to 80, the peak load increases by 42.72%. However, changes in fy,o and D/B have no significant effect on the peak load. Full article
(This article belongs to the Special Issue Sustainable and Low-Carbon Building Materials and Structures)
Show Figures

Figure 1

17 pages, 6288 KiB  
Article
Concentric Compressive Behavior and Design of Stainless Steel–Concrete Double-Skin Composite Tubes Influenced by Dual Hydraulic Pressures
by Jian-Tao Wang, Yang Yang, Kai-Lin Yang, Deng-Long Hu, Long-Bo Xu and Jun-Xin Li
J. Mar. Sci. Eng. 2024, 12(12), 2140; https://doi.org/10.3390/jmse12122140 - 23 Nov 2024
Viewed by 923
Abstract
The external hydraulic pressure and internal medium pressure acting on submarine pipelines can lead to the coupling effect of active and passive constraints on the mechanical performance of steel–concrete double-skin composite tubes, resulting in a significantly different bearing capacity mechanism compared to terrestrial [...] Read more.
The external hydraulic pressure and internal medium pressure acting on submarine pipelines can lead to the coupling effect of active and passive constraints on the mechanical performance of steel–concrete double-skin composite tubes, resulting in a significantly different bearing capacity mechanism compared to terrestrial engineering. In this paper, the full-range concentric compressive mechanism of new-type stainless steel–concrete double-skin (SSCDS) composite tubes subjected to dual hydraulic pressure was analyzed by the finite element method. The influence of geometric–physical parameters at various water depths was discussed. The key results reveal that imposing dual hydraulic pressures significantly improves the confinement of double-skin tubes to encased concrete, resulting in a higher axial compressive strength and a non-uniform stress distribution; increasing the material strengths of concrete, outer tubes and inner tubes results in an approximately linear enhancement in axial bearing capacity; enhancing the diameter-to-thickness ratios of outer tubes and inner tubes can decrease the bearing capacity of SSCDS composite tubes; and the axial compression strength of SSCDS composite tubes with a higher hollow ratio of 0.849 tends to decrease with increasing outer hydraulic pressure. A practical method that integrates the effects of dual hydraulic pressures was developed and validated for the strength calculation of SSCDS composite tubes. This research provides fundamental guidelines for the application of pipe-in-pipe structures in deep-sea engineering. Full article
(This article belongs to the Special Issue Analysis and Design of Marine Structures)
Show Figures

Figure 1

18 pages, 1851 KiB  
Article
Comparative Study of Life-Cycle Environmental and Cost Performance of Aluminium Alloy–Concrete Composite Columns
by Shafayat Bin Ali, George S. Kamaris, Michaela Gkantou and Yue Huang
Sustainability 2024, 16(21), 9252; https://doi.org/10.3390/su16219252 - 24 Oct 2024
Cited by 2 | Viewed by 2124
Abstract
As is widely known, the construction industry is one of the sectors with a large contribution to global carbon emissions. Despite numerous efforts in the construction industry to develop low-carbon materials, there is a limited number of studies quantifying and presenting the overall [...] Read more.
As is widely known, the construction industry is one of the sectors with a large contribution to global carbon emissions. Despite numerous efforts in the construction industry to develop low-carbon materials, there is a limited number of studies quantifying and presenting the overall environmental impact when these materials are applied in a construction project as structural members. To address this gap, this study focuses on assessing the life-cycle performance of novel structural aluminium alloy–concrete composite columns. In this paper, the environmental impacts and economic aspects of a concrete-filled aluminium alloy tubular (CFAT) column and a concrete-filled double-skin aluminium alloy tubular (CFDSAT) column were assessed using life-cycle assessment (LCA) and life-cycle cost analysis (LCCA) approaches, respectively. The cradle-to-grave system boundary is considered for these analyses to cover the entire life-cycle. A concrete-filled steel tubular (CFST) column is also assessed for reference. All columns are designed to have the same load-carrying capacity and, thus, are compared on a level-playing basis. A comparison is also made of the self-weight of these columns. In particular, the self-weight of the CFST column is reduced by around 17% when the steel tube is replaced by an aluminium alloy tube, and decreased by 47% when the double-skin technique is adopted in CFDSAT columns. The LCA results indicate that the CO2 emission of CFST and CFAT is almost the same, which is 21% less than the CFDSAT columns due to the use of high aluminium in the latter. The LCCA results show that the total life-cycle cost of CFAT and CFDSAT columns is around 29% and 14% lower, respectively, than that of the CFST column. Finally, a sensitivity analysis was carried out to evaluate the effects of data and assumptions on the life-cycle performance of the examined columns. Full article
Show Figures

Figure 1

62 pages, 64798 KiB  
Article
Numerical and Theoretical Studies on Axial Compression Performance of Modular Steel Tubular Columns Grouped with Shear-Key Connectors
by Kashan Khan, Zhihua Chen, Maged A. Youssef and Danish Abbas
Buildings 2024, 14(7), 2018; https://doi.org/10.3390/buildings14072018 - 2 Jul 2024
Cited by 1 | Viewed by 2346
Abstract
Shear-keyed inter-modular connections (IMCs) are integral components of high-rise modular steel structures (MSSs), providing robust interconnectivity to support grouped tubular columns across modules, thereby introducing column discontinuities and distinctive structural behavior. This study conducted a comprehensive numerical assessment and theoretical analysis of the [...] Read more.
Shear-keyed inter-modular connections (IMCs) are integral components of high-rise modular steel structures (MSSs), providing robust interconnectivity to support grouped tubular columns across modules, thereby introducing column discontinuities and distinctive structural behavior. This study conducted a comprehensive numerical assessment and theoretical analysis of the axial compression behavior of grouped tubular columns based on a validated finite element model (FEM), which captured the member-to-structural level behavior of steel hollow section (SHS) columns and accommodated geometric imperfections. An FEM was initially developed and validated using 28 axial compression tests documented in the literature, comprising 15 tests on cold-formed and 13 on hot-rolled steel hollow section (SHS) columns. The primary parameters explored in tests included material properties (stainless/carbon), processing methods (cold-formed/hot-rolled), cross-section sizes (D/B), cross-sectional or member slenderness ratios (D/tc, B/tc, or Lc/r), and the number of columns (1, 7, and 11). A comprehensive parametric numerical study involving 103 grouped tubular column FEMs then investigated the influence of initial imperfection, shear-key height (Lt), thickness (tt), steel tube length (D), width (B), thickness (tc), and height (Lc) alongside the effects of space between tube and key, and the gap between tubes. The results indicated that the load-shortening behavior of the grouped columns consists of linear elastic, inelastic, and recession stages. The failure modes observed primarily displayed an S-shaped pair of inward and outward local buckling on the outer sides and double S-shaped local buckling on the interior sides. The buckling arose near the shear key or at 1/4 or 1/2 of the column height. None of the considered models experienced global buckling. Increasing tt, Lt, tc, D, or B enhances strength and stiffness, while Lc or Lc/r linearly affects stiffness and ductility. The columns’ nominal axial strength was reduced because of the shear keys, which decreased compression yielding and caused localized elastic buckling. Subsequently, the theoretical analysis revealed that the design codes do not capture this behavior, and thus, their capacity estimate yields inaccurate findings. This discrepancy renders existing code prediction equations, including those from Indian (IS800), New Zealand (NZS400), European (EC3:1-1), Canadian (CSA S16), American (AISC360-16), and Chinese (GB50017) standards, as well as the model proposed by Li et al., non-conservative. To assure conservative results, the paper recommended modification of existing standards and proposed prediction equations based on a fourth-order differential equation that describes the actual behavior of modular steel columns grouped with shear keys. The proposed design approach accurately predicted the axial compression capacity of modular steel-grouped columns, proving conservative yet effective. This provides valuable data that could transform design and construction techniques for MSSs, extending to various column and IMC forms through adaptable design parameters. This enhancement in structural performance and safety significantly contributes to the advancement of modular construction practices. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

11 pages, 4312 KiB  
Article
Response and Fracture of EMT Carbon Steel Round-Hole Tubes with Different Hole Orientations and Different Hole Diameters under Cyclic Bending
by Wen-Fung Pan and Yu-An Chen
Appl. Sci. 2024, 14(13), 5475; https://doi.org/10.3390/app14135475 - 24 Jun 2024
Viewed by 1057
Abstract
This paper aims to investigate the response and fracture of EMT carbon steel round-hole tubes (EMT carbon steel RHTs) under cyclic bending loads. The study considers four different hole orientations (0°, 30°, 60°, and 90°) and five distinct hole diameters (2, 4, 6, [...] Read more.
This paper aims to investigate the response and fracture of EMT carbon steel round-hole tubes (EMT carbon steel RHTs) under cyclic bending loads. The study considers four different hole orientations (0°, 30°, 60°, and 90°) and five distinct hole diameters (2, 4, 6, 8, and 10 mm). The results reveal that hole orientation and diameter exert a minimal impact on the moment-curvature relationship, leading to the formation of stable loops. The ovalization-curvature graphs demonstrate a trend of asymmetry, serration, and growth with an increasing number of bending cycles. Additionally, larger hole orientations or smaller notch diameters result in reduced ovalization. Furthermore, the double logarithmic coordinates of the controlled curvature–number of cycles required to induce fracture reveal five parallel lines for different hole diameters when the hole orientation is fixed. Finally, in adopting the formulas for smooth tubes and for 6061-T6 aluminum alloy round-hole tubes (6061 aluminum alloy RHTs), this study adjusts the related material parameters. These modifications effectively describe the controlled curvature–number of cycles required to induce fracture for EMT carbon steel RHTs with different hole orientations and diameters under cyclic bending, demonstrating reasonable agreement with the experimental results. Full article
Show Figures

Figure 1

14 pages, 6535 KiB  
Article
Local Buckling of Locally Sharp-Notched C2700 Brass Circular Tubes Subjected to Cyclic Bending
by Yu-An Chen and Wen-Fung Pan
Metals 2024, 14(6), 656; https://doi.org/10.3390/met14060656 - 31 May 2024
Viewed by 729
Abstract
This paper aims to investigate the response and local buckling of locally sharp-notched C2700 brass circular tubes (LSN C2700 brass circular tubes) under cyclic bending loads. The study considers four different notch orientations (0°, 30°, 60°, and 90°) and five distinct notch depths [...] Read more.
This paper aims to investigate the response and local buckling of locally sharp-notched C2700 brass circular tubes (LSN C2700 brass circular tubes) under cyclic bending loads. The study considers four different notch orientations (0°, 30°, 60°, and 90°) and five distinct notch depths (0.2, 0.4, 0.6, 0.8, and 1.0 mm). The results reveal that notch orientation and depth exert minimal impact on the moment–curvature relationship, leading to the formation of stable loops. The ovalization–curvature graphs demonstrate a trend of symmetry, serration, and growth with an increasing number of bending cycles. Additionally, larger notch orientations or smaller notch depths result in reduced ovalization. Furthermore, the double logarithmic coordinates of controlled curvature–number of cycles necessary to induce local buckling reveal five non-parallel lines representing different notch depths when the notch orientation is fixed. Finally, by adopting the formulas for smooth tubes and for locally sharp-notched 304 stainless steel circular tubes (LSN SS304 circular tubes), this study adjusts the related material parameters accordingly. These modifications effectively describe the controlled curvature–number of cycles necessary to induce local buckling for LSN C2700 brass circular tubes with different notch orientations and depths under cyclic bending, demonstrating reasonable agreement with the experimental results. Full article
(This article belongs to the Special Issue Failure and Degradation of Metals)
Show Figures

Figure 1

33 pages, 21722 KiB  
Article
Bearing Behavior of Engineered Cementitious Composite and Ultra-High-Performance Concrete Filled-In Double Steel Tubular Composite Columns Subjected to Eccentrical Load
by Liangqin Jiang, Yigang Hong, Jing Ji, Yingchun Liu, Zhanbin Zhang, Xuan Chu and Guiling Ma
Buildings 2024, 14(5), 1487; https://doi.org/10.3390/buildings14051487 - 20 May 2024
Cited by 2 | Viewed by 1234
Abstract
To study the eccentric compression mechanical properties of ECC and UHPC filled-in double steel tubular (EUFDST) composite columns, 35 full-scale EUCFDST composite column specimens were designed by ABAQUS software with the slenderness ratio (λ), UHPC cylinder compressive strength (fcu [...] Read more.
To study the eccentric compression mechanical properties of ECC and UHPC filled-in double steel tubular (EUFDST) composite columns, 35 full-scale EUCFDST composite column specimens were designed by ABAQUS software with the slenderness ratio (λ), UHPC cylinder compressive strength (fcu), inner and outer steel tubular strength (fy1, fy2), inner and outer steel tubular thickness (t1, t2), inner and outer steel tubular diameter ratio (Ω), eccentricity (e), and fiber content (γ) as the main parameters. By comparison with the simulation of the existing test, the correctness of the finite element modeling is verified. The parameter analysis of 35 full-scale EUFDST composite columns was carried out to obtain the eccentric load-mid-span deflection curve of the specimens. The failure mechanism, ductility coefficient, and stiffness degradation of the composite columns under different parameters were analyzed, and the section of the composite column was verified to satisfy the plane section assumption. The variation trend of maximum load-bearing capacity and the ductility of composite columns under different parameter conditions was obtained. By introducing the eccentricity correction coefficient and slenderness ratio correction coefficient, the calculation equation of the eccentric maximum load-bearing capacity of EUCFDST composite columns is statistically regressed, which provides a basis for the practical use of these columns. Full article
Show Figures

Figure 1

32 pages, 14225 KiB  
Article
Stress Concentration Factors of Concrete-Filled Double-Skin Tubular K-Joints
by Qian Xia, Ling Ma, Gang Li, Chao Hu, Lei Zhang, Fei Xu and Zhenhai Liu
Buildings 2024, 14(5), 1363; https://doi.org/10.3390/buildings14051363 - 10 May 2024
Cited by 5 | Viewed by 1325
Abstract
Tubular joints are important connecting parts of a welded steel tube structure. The S-N curves based on the hot spot stress (HSS) method are often used to evaluate the fatigue life of tubular joints in practical engineering. The stress concentration factor (SCF) is [...] Read more.
Tubular joints are important connecting parts of a welded steel tube structure. The S-N curves based on the hot spot stress (HSS) method are often used to evaluate the fatigue life of tubular joints in practical engineering. The stress concentration factor (SCF) is a key parameter to calculate HSS. In this paper, stress concentration tests of hollow-section and concrete-filled double-skin tubular (CFDST) K-joints were carried out, respectively, and then finite element models of K-joints considering the weld were established. The developed models were validated with the experimental results. The influence of key geometrical parameters, such as the diameter ratio of brace to chord β, the diameter to thickness ratio of chord γ, the wall thickness ratio of brace to chord τ, brace angle θ, and hollow section ratio ζ on the distribution and key position of SCFs along the weld toe, was discussed. Parametric studies were conducted to obtain the calculating equations for the SCF values of CFDST K-joints. The results demonstrate that infill concrete can effectively reduce SCFs along the weld on the chord. When the hollow section ratio was reduced to 0.317, the SCF was reduced by 77.2%. Notably, the SCF reduction rate was sensitive to γ and θ, with a decrease observed as γ increased. The hollow section ratio ζ had a less pronounced effect on SCF distribution patterns, but as ζ decreased, the chord’s stiffness improved, suggesting a potential approach to enhance joint performance. The distribution of SCFs is similar for joints of the same type but different geometric configurations. The innovatively integrated hollow section ratio in the CFDST design equation significantly simplifies and enhances the precision of SCF calculations for CFDST K-joints. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

21 pages, 15097 KiB  
Article
The Potential of Multi-Task Learning in CFDST Design: Load-Bearing Capacity Design with Three MTL Models
by Zhenyu Wang, Jian Zhou and Kang Peng
Materials 2024, 17(9), 1994; https://doi.org/10.3390/ma17091994 - 25 Apr 2024
Cited by 3 | Viewed by 1134
Abstract
Concrete-filled double steel tubes (CFDSTs) are a load-bearing structure of composite materials. By combining concrete and steel pipes in a nested structure, the performance of the column will be greatly improved. The performance of CFDSTs is closely related to their design. However, existing [...] Read more.
Concrete-filled double steel tubes (CFDSTs) are a load-bearing structure of composite materials. By combining concrete and steel pipes in a nested structure, the performance of the column will be greatly improved. The performance of CFDSTs is closely related to their design. However, existing codes for CFDST design often focus on how to verify the reliability of a design, but specific design parameters cannot be directly provided. As a machine learning technique that can simultaneously learn multiple related tasks, multi-task learning (MTL) has great potential in the structural design of CFDSTs. Based on 227 uniaxial compression cases of CFDSTs collected from the literature, this paper utilized three multi-task models (multi-task Lasso, VSTG, and MLS-SVR) separately to provide multiple parameters for CFDST design. To evaluate the accuracy of models, four statistical indicators were adopted (R2, RMSE, RRMSE, and ρ). The experimental results indicated that there was a non-linear relationship among the parameters of CFDSTs. Nevertheless, MLS-SVR was still able to provide an accurate set of design parameters. The coefficient matrices of two linear models, multi-task Lasso and VSTG, revealed the potential connection among CFDST parameters. The latent-task matrix V in VSTG divided the prediction tasks of inner tube diameter, thickness, strength, and concrete strength into three groups. In addition, the limitations of this study and future work are also summarized. This paper provides new ideas for the design of CFDSTs and the study of related codes. Full article
(This article belongs to the Special Issue Artificial Intelligence in Materials Science and Engineering)
Show Figures

Figure 1

29 pages, 3177 KiB  
Article
Prediction of Torque Capacity in Circular Concrete-Filled Double-Skin Tubular Members under Pure Torsion via Machine Learning and Shapley Additive Explanations Interpretation
by Lenganji Simwanda and Bolanle Deborah Ikotun
Buildings 2024, 14(4), 1040; https://doi.org/10.3390/buildings14041040 - 8 Apr 2024
Cited by 3 | Viewed by 1649
Abstract
The prediction of torque capacity in circular Concrete-Filled Double-Skin Tubular (CFDST) members under pure torsion is considered vital for structural design and analysis. In this study, torque capacity is predicted using machine learning (ML) algorithms, such as Categorical Boosting (CatBoost), Extreme Gradient Boosting [...] Read more.
The prediction of torque capacity in circular Concrete-Filled Double-Skin Tubular (CFDST) members under pure torsion is considered vital for structural design and analysis. In this study, torque capacity is predicted using machine learning (ML) algorithms, such as Categorical Boosting (CatBoost), Extreme Gradient Boosting (XGBoost), Gradient Boosting Machine (GBM), Random Forest (RF), and Decision Tree (DT), which are employed. The interpretation of the results is conducted using Shapley Additive Explanations (SHAPs). The performance of these ML models is evaluated against two traditional analytical formulas that have been proposed and are available in the literature. Through comprehensive analysis, it is shown that superior predictive capabilities are possessed by the CatBoost and XGBoost models, characterized by high R2 values and minimal mean errors. Additionally, insights into the influence of input features are provided by SHAP interpretation, with an emphasis on key parameters such as concrete compressive strength and steel tube dimensions. The gap between empirical models and ML techniques is bridged by this study, offering engineers a more accurate and efficient tool for CFDST structural design. Significant implications for optimizing CFDST column designs and advancing structural engineering practices are presented by these findings. Directions for future research include the further refinement of ML models and the integration of probabilistic analyses for enhanced structural resilience. Overall, the transformative potential of ML and SHAP interpretation in advancing the field of structural engineering is showcased by this study. Full article
Show Figures

Figure 1

Back to TopTop