Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = dorsal–ventral and anterior–posterior axis formation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4905 KB  
Article
Remodeling of the Platynereis Musculature during Sexual Maturation
by Ina Dahlitz, Adriaan Dorresteijn and Anne Holz
Biology 2023, 12(2), 254; https://doi.org/10.3390/biology12020254 - 6 Feb 2023
Cited by 2 | Viewed by 2698
Abstract
Background: The external transformations associated with sexual maturation in Platynereis dumerilii (Audouin and Milne Edwards) are well studied, whereas the internal changes along the body axis have not been systematically analyzed. Therefore, we examined muscle morphology in body regions located anterior or posterior [...] Read more.
Background: The external transformations associated with sexual maturation in Platynereis dumerilii (Audouin and Milne Edwards) are well studied, whereas the internal changes along the body axis have not been systematically analyzed. Therefore, we examined muscle morphology in body regions located anterior or posterior to the prospective atokous/epitokous border to generate a structural basis for internal transformations. Results: All dorsal and ventral longitudinal muscles were significantly reduced in size and density after sexual maturation and strongly atrophied, with the greatest decrease in the anterior segments of females. Despite the general reduction in size throughout the longitudinal muscles, we found a specific degradation mechanism for the posterior segments, which were characterized by the formation of secondary bundle-like fibrous structures. In addition, we observed a profound remodeling of the transversal muscles in the posterior segments of both sexes, apparently resulting in excessive thickening of these muscles. Accordingly, the entire transversal muscle complex was severely swollen and ultrastructurally characterized by a greatly increased number of mitochondria. As a possible trigger for this remodeling, we discovered an enormous number of small, blind-ending blood vessels that completely penetrated the longitudinal and transversal muscles in posterior segments. In addition, both the number of visceral muscles as well as their coelothelial covering were reduced during sexual maturation. Conclusions: We hypothesize that a possible reason for the secondary bundling of the longitudinal fibers, as well as the difference in size of the posterior transversal muscles, could be the high degree of posterior vascularization. The different degree of muscle remodeling thus depends on segmental affiliation and reflects the tasks in the motility of the different body regions after maturation. The strongest atrophy was found in the anterior segments, while signs of redifferentiation were encountered in posterior segments, supported by the vigorous growth of vessels supplying the transformed epitokous parapodia and associated muscles, which allows rapid swimming during swarming and gamete release. Full article
(This article belongs to the Section Developmental and Reproductive Biology)
Show Figures

Figure 1

16 pages, 1213 KB  
Review
Intracellular Communication among Morphogen Signaling Pathways during Vertebrate Body Plan Formation
by Kimiko Takebayashi-Suzuki and Atsushi Suzuki
Genes 2020, 11(3), 341; https://doi.org/10.3390/genes11030341 - 24 Mar 2020
Cited by 14 | Viewed by 7054
Abstract
During embryonic development in vertebrates, morphogens play an important role in cell fate determination and morphogenesis. Bone morphogenetic proteins (BMPs) belonging to the transforming growth factor-β (TGF-β) family control the dorsal–ventral (DV) patterning of embryos, whereas other morphogens such as fibroblast growth factor [...] Read more.
During embryonic development in vertebrates, morphogens play an important role in cell fate determination and morphogenesis. Bone morphogenetic proteins (BMPs) belonging to the transforming growth factor-β (TGF-β) family control the dorsal–ventral (DV) patterning of embryos, whereas other morphogens such as fibroblast growth factor (FGF), Wnt family members, and retinoic acid (RA) regulate the formation of the anterior–posterior (AP) axis. Activation of morphogen signaling results in changes in the expression of target genes including transcription factors that direct cell fate along the body axes. To ensure the correct establishment of the body plan, the processes of DV and AP axis formation must be linked and coordinately regulated by a fine-tuning of morphogen signaling. In this review, we focus on the interplay of various intracellular regulatory mechanisms and discuss how communication among morphogen signaling pathways modulates body axis formation in vertebrate embryos. Full article
(This article belongs to the Special Issue Transcriptional Regulation of Early Embryogenesis)
Show Figures

Figure 1

7 pages, 335 KB  
Review
Establishing the Embryonic Axes: Prime Time for Teratogenic Insults
by Thomas W. Sadler
J. Cardiovasc. Dev. Dis. 2017, 4(3), 15; https://doi.org/10.3390/jcdd4030015 - 11 Sep 2017
Cited by 17 | Viewed by 6511
Abstract
A long standing axiom in the field of teratology states that the teratogenic period, when most birth defects are produced, occurs during the third to eighth weeks of development post-fertilization. Any insults prior to this time are thought to result in a slowing [...] Read more.
A long standing axiom in the field of teratology states that the teratogenic period, when most birth defects are produced, occurs during the third to eighth weeks of development post-fertilization. Any insults prior to this time are thought to result in a slowing of embryonic growth from which the conceptus recovers or death of the embryo followed by spontaneous abortion. However, new insights into embryonic development during the first two weeks, including formation of the anterior-posterior, dorsal-ventral, and left-right axes, suggests that signaling pathways regulating these processes are prime targets for genetic and toxic insults. Establishment of the left-right (laterality) axis is particularly sensitive to disruption at very early stages of development and these perturbations result in a wide variety of congenital malformations, especially heart defects. Thus, the time for teratogenic insults resulting in birth defects should be reset to include the first two weeks of development. Full article
(This article belongs to the Special Issue Left–Right Asymmetry and Cardiac Morphogenesis)
Show Figures

Figure 1

Back to TopTop