Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = distribution locational marginal pricing (DLMP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1477 KiB  
Article
A Cost Benefit Analysis of Vehicle-to-Grid (V2G) Considering Battery Degradation Under the ACOPF-Based DLMP Framework
by Joseph Stekli, Abhijith Ravi and Umit Cali
Smart Cities 2025, 8(4), 138; https://doi.org/10.3390/smartcities8040138 - 14 Aug 2025
Viewed by 279
Abstract
This paper seeks to provide a cost benefit analysis of the implementation of a vehicle-to-grid (V2G) charging strategy relative to a smart charging (V1G) strategy from the perspective of an individual electric vehicle (EV) owner with and without solar photovoltaics (PV) located on [...] Read more.
This paper seeks to provide a cost benefit analysis of the implementation of a vehicle-to-grid (V2G) charging strategy relative to a smart charging (V1G) strategy from the perspective of an individual electric vehicle (EV) owner with and without solar photovoltaics (PV) located on their roof. This work utilizes a novel AC optimized power flow model (ACOPF) to produce distributed location marginal prices (DLMP) on a modified IEEE-33 node network and uses a complete set of real-world costs and benefits to perform this analysis. Costs, in the form of the addition of a bi-directional charger and the increased vehicle depreciation incurred by a V2G strategy, are calculated using modern reference sources. This produces a more true-to-life comparison of the V1G and V2G strategies from the frame of reference of EV owners, rather than system operators, with parameterization of EV penetration levels performed to look at how the choice of strategy may change over time. Counter to much of the existing literature, when the analysis is performed in this manner it is found that the benefits of implementing a V2G strategy in the U.S.—given current compensation schemes—do not outweigh the incurred costs to the vehicle owner. This result helps explain the gap in findings between the existing literature—which typically finds that a V2G strategy should be favored—and the real world, where V2G is rarely employed by EV owners. Full article
Show Figures

Figure 1

23 pages, 4230 KiB  
Article
Optimizing Peer-to-Peer Energy Transactions: Determining the Allowable Maximum Trading Power for Participants
by Pikkanate Angaphiwatchawal and Surachai Chaitusaney
Energies 2024, 17(6), 1423; https://doi.org/10.3390/en17061423 - 15 Mar 2024
Cited by 3 | Viewed by 1794
Abstract
This paper presents a comprehensive study on the impacts of peer-to-peer (P2P) energy markets on distribution systems, specifically focusing on voltage, power loss, and congestion. While P2P energy markets create opportunities for direct trading between prosumers and consumers, ensuring compliance with distribution system [...] Read more.
This paper presents a comprehensive study on the impacts of peer-to-peer (P2P) energy markets on distribution systems, specifically focusing on voltage, power loss, and congestion. While P2P energy markets create opportunities for direct trading between prosumers and consumers, ensuring compliance with distribution system constraints remains a challenge. This paper proposes an iterative method and graphical interpretation in order to assess complex interactions, addressing the persistent issue of network constraints. Additionally, this paper proposes a method to determine distribution locational marginal prices (DLMPs) for real-time traditional energy markets. This ensures effective coordination among sellers, buyers, and the distribution system operator. The proposed method aims to prevent negative impacts on distribution system operation via the determination of the allowable maximum trading power (MTP), ensuring empirical validity and practical implementation via operating conditions and forecast errors, thus distinguishing it from prior studies. This paper also establishes a model for P2P energy market interactions, utilizing linear estimations for efficient DLMP updates. The contributions of this paper enhance the understanding and operation of P2P energy markets, and is supported by simulation results validating the proposed method. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

14 pages, 2052 KiB  
Article
Battery Swapping Station Pricing Optimization Considering Market Clearing and Electric Vehicles’ Driving Demand
by Xuewen Geng, Fengbin An, Chengmin Wang and Xi He
Energies 2023, 16(8), 3373; https://doi.org/10.3390/en16083373 - 12 Apr 2023
Cited by 2 | Viewed by 3079
Abstract
With the development of the new energy vehicle market, the pricing of battery swapping stations (BSS) is becoming a concern. The pricing models of BSS usually only consider the interaction between the distribution system operator (DSO) and the BSS or between the BSS [...] Read more.
With the development of the new energy vehicle market, the pricing of battery swapping stations (BSS) is becoming a concern. The pricing models of BSS usually only consider the interaction between the distribution system operator (DSO) and the BSS or between the BSS and electric vehicles (EVs). The impact of DSO and EVs on the pricing strategy of BSS has received less attention, which does not reflect the actual complex situation. Therefore, we propose a three-level BSS pricing method that includes market clearing and EV behaviors. Firstly, the distribution locational marginal price (DLMP) is modeled to determine the impact of the DSO on BSS. Secondly, the EV demand response is used to estimate the impact of EVs on BSS. Thirdly, to increase the adaptability of this model, an iteration algorithm with approximations and relaxations is used with mixed integer linear programming, effectively solving the pricing optimization. According to this optimization, it is evident that the BSS make decisions in the market environment by monitoring the quantity of batteries in various states and generate extra income by acting in response to price fluctuations in the electricity market. The model’s viability and applicability are confirmed. Full article
(This article belongs to the Section F2: Distributed Energy System)
Show Figures

Figure 1

18 pages, 1590 KiB  
Article
Distribution Locational Marginal Price Based Transactive Energy Management in Distribution Systems with Smart Prosumers—A Multi-Agent Approach
by Yerasyl Amanbek, Aidana Kalakova, Svetlana Zhakiyeva, Korhan Kayisli, Nurkhat Zhakiyev and Daniel Friedrich
Energies 2022, 15(7), 2404; https://doi.org/10.3390/en15072404 - 25 Mar 2022
Cited by 17 | Viewed by 4277
Abstract
This work proposes a distribution locational marginal price (DLMP)-based transactive energy (TE) framework for distribution systems with enthusiastic or smart prosumers. The framework uses a multi-agent system (MAS) as the basis on which the proposed TE model, i.e., distribution locational marginal price (DLMP) [...] Read more.
This work proposes a distribution locational marginal price (DLMP)-based transactive energy (TE) framework for distribution systems with enthusiastic or smart prosumers. The framework uses a multi-agent system (MAS) as the basis on which the proposed TE model, i.e., distribution locational marginal price (DLMP) based TE management system (DTEMS), is implemented. DTEMS uses a novel metric known as the nodal earning component, which is determined by the optimal power flow (OPF) based smart auction mechanism, to schedule the TE transactions optimally among the stakeholders by alleviating the congestion in the distribution system. Based on the individual contributions to the congestion relief, DTEMS ranks the prosumers and loads as most valuable players (MVP) and assigns the energy trading price according to the category of the player. The effectiveness of the proposed TE model is verified by simulating the proposed DTEMS for a modified 33 bus radial distribution system fed with various plug-able energy resources, prosumers, and microgrids. Full article
(This article belongs to the Special Issue Innovative Solutions for Modern Distribution Networks)
Show Figures

Figure 1

17 pages, 4835 KiB  
Article
Transactive-Market-Based Operation of Distributed Electrical Energy Storage with Grid Constraints
by M. Nazif Faqiry, Lawryn Edmonds, Haifeng Zhang, Amin Khodaei and Hongyu Wu
Energies 2017, 10(11), 1891; https://doi.org/10.3390/en10111891 - 17 Nov 2017
Cited by 30 | Viewed by 5480
Abstract
In a transactive energy market, distributed energy resources (DERs) such as dispatchable distributed generators (DGs), electrical energy storages (EESs), distribution-scale load aggregators (LAs), and renewable energy sources (RESs) have to earn their share of supply or demand through a bidding process. In such [...] Read more.
In a transactive energy market, distributed energy resources (DERs) such as dispatchable distributed generators (DGs), electrical energy storages (EESs), distribution-scale load aggregators (LAs), and renewable energy sources (RESs) have to earn their share of supply or demand through a bidding process. In such a market, the distribution system operator (DSO) may optimally schedule these resources, first in a forward market, i.e., day-ahead, and in a real-time market later on, while maintaining a reliable and economic distribution grid. In this paper, an efficient day-ahead scheduling of these resources, in the presence of interaction with wholesale market at the locational marginal price (LMP), is studied. Due to inclusion of EES units with integer constraints, a detailed mixed integer linear programming (MILP) formulation that incorporates simplified DistFlow equations to account for grid constraints is proposed. Convex quadratic line and transformer apparent power flow constraints have been linearized using an outer approximation. The proposed model schedules DERs based on distribution locational marginal price (DLMP), which is obtained as the Lagrange multiplier of the real power balance constraint at each distribution bus while maintaining physical grid constraints such as line limits, transformer limits, and bus voltage magnitudes. Case studies are performed on a modified IEEE 13-bus system with high DER penetration. Simulation results show the validity and efficiency of the proposed model. Full article
(This article belongs to the Special Issue Battery Energy Storage Applications in Smart Grid)
Show Figures

Figure 1

Back to TopTop