Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = dialyzer compatibility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 9631 KiB  
Article
Development of Hollow Fiber Membranes Suitable for Outside-In Filtration of Human Blood Plasma
by David Ramada, Bente Adema, Mohamed Labib, Odyl ter Beek and Dimitrios Stamatialis
Membranes 2025, 15(1), 16; https://doi.org/10.3390/membranes15010016 - 9 Jan 2025
Viewed by 1585
Abstract
Hemodialysis (HD) is a critical treatment for patients with end-stage kidney disease (ESKD). The effectiveness of conventional dialyzers used there could be compromised during extended use due to limited blood compatibility of synthetic polymeric membranes and sub-optimal dialyzer design. In fact, blood flow [...] Read more.
Hemodialysis (HD) is a critical treatment for patients with end-stage kidney disease (ESKD). The effectiveness of conventional dialyzers used there could be compromised during extended use due to limited blood compatibility of synthetic polymeric membranes and sub-optimal dialyzer design. In fact, blood flow in the hollow fiber (HF) membrane could trigger inflammatory responses and thrombus formation, leading to reduced filtration efficiency and limiting therapy duration, a consequence of flowing the patients’ blood through the lumen of each fiber while the dialysate passes along the inter-fiber space (IOF, inside-out filtration). This study investigates the development of HF membranes for “outside-in filtration” (OIF) in HD. In OIF, blood flows through the inter-fiber space while dialysate flows within the fiber lumens, reducing the risk of fiber clogging and potentially extending treatment duration. For the OIF mode, the membrane should have a blood-compatible outer selective layer in contact with the patient’s blood. We develop HFs for OIF via liquid-induced phase separation using PES/PVP (polyethersulphone/polyvinylpyrrolidone) blends. The fibers’ surface morphology (SEM, scanning electron microscopy), chemistry (ATR-FTIR—attenuated total reflection-Fourier transform infrared spectroscopy, XPS—X-ray photoelectron spectroscopy), transport properties, and uremic toxin removal from human plasma are evaluated and compared to commercial HFs. These membranes feature a smooth, hydrophilic outer layer, porous lumen, ultrafiltration coefficient of 13–34 mL m2 h−1 mmHg−1, adequate mechanical properties, low albumin leakage, and toxin removal performance on par with commercial membranes in IOF and OIF. They offer potential for more efficient long-term HD by reducing clogging and systemic anticoagulation needs and enhancing treatment time and toxin clearance. Full article
(This article belongs to the Section Membrane Applications for Other Areas)
Show Figures

Graphical abstract

18 pages, 3148 KiB  
Article
Evaluating the Compatibility of Three Aluminum Salt-Adjuvanted Recombinant Protein Antigens (Trivalent NRRV) Combined with a Mock Trivalent Sabin-IPV Vaccine: Analytical and Formulation Challenges
by Prashant Kumar, Atsushi Hamana, Christopher Bird, Brandy Dotson, Soraia Saleh-Birdjandi, David B. Volkin and Sangeeta B. Joshi
Vaccines 2024, 12(10), 1102; https://doi.org/10.3390/vaccines12101102 - 26 Sep 2024
Cited by 1 | Viewed by 1729
Abstract
In this work, we describe compatibility assessments of a recombinant, trivalent non-replicating rotavirus vaccine (t-NRRV) candidate with a mock trivalent Sabin inactivated polio vaccine (t-sIPV). Both t-sIPV and t-NRRV are incompatible with thimerosal (TH), a preservative commonly used in pediatric pentavalent combination vaccines [...] Read more.
In this work, we describe compatibility assessments of a recombinant, trivalent non-replicating rotavirus vaccine (t-NRRV) candidate with a mock trivalent Sabin inactivated polio vaccine (t-sIPV). Both t-sIPV and t-NRRV are incompatible with thimerosal (TH), a preservative commonly used in pediatric pentavalent combination vaccines (DTwP-Hib-HepB) distributed in low- and middle-income countries (LMICs), preventing the development of a heptavalent combination. The compatibility of t-NRRV with a mock DTwP-Hib-HepB formulation is described in a companion paper. This case study highlights the analytical and formulation challenges encountered when combining a mock t-sIPV vaccine (unadjuvanted) with Alhydrogel® (AH) adjuvanted t-NRRV. Selective and stability-indicating competition ELISAs were implemented to monitor antibody binding to each of the six antigens (±AH). Simple mixing caused the undesired desorption of t-NRRV from AH with the concomitant binding of t-sIPV to AH. Although the former effect was mitigated by dialyzing sIPV bulks, decreased sIPV storage stability was observed at accelerated temperatures in the bivalent combination with a rank-ordering of P[8] > P[6] > P[4] and sIPV3 > sIPV2 > sIPV1. The compatibility of AH-adsorbed t-sIPV with alternative preservatives was evaluated, and parabens (methyl, propyl) were identified for potential use in this multi-dose bivalent formulation. Along with a companion paper, the lessons learned are discussed to facilitate the future formulation development of pediatric combination vaccines with new antigens. Full article
(This article belongs to the Special Issue Recent Advances in Vaccine Adjuvants and Formulation)
Show Figures

Figure 1

12 pages, 295 KiB  
Review
Latest Trends in Hemodiafiltration
by Francisco Maduell, Diana Rodríguez-Espinosa and José Jesús Broseta
J. Clin. Med. 2024, 13(4), 1110; https://doi.org/10.3390/jcm13041110 - 16 Feb 2024
Cited by 5 | Viewed by 4971
Abstract
This review provides a detailed analysis of hemodiafiltration (HDF), its progress from an emerging technique to a potential conventional treatment for chronic hemodialysis patients, and its current status. The article covers the advances, methods, and clinical benefits of HDF, specifically focusing on its [...] Read more.
This review provides a detailed analysis of hemodiafiltration (HDF), its progress from an emerging technique to a potential conventional treatment for chronic hemodialysis patients, and its current status. The article covers the advances, methods, and clinical benefits of HDF, specifically focusing on its impact on cardiovascular health, survival rates, and overall well-being. The review also addresses questions about the safety of HDF and provides evidence to dispel concerns related to the elimination of beneficial substances and infection risks. Additionally, the article explores the potential implications of expanded hemodialysis (HDx) as an alternative to HDF, its classification, safety profile, and an ongoing trial assessing its non-inferiority to HDF. Supported by evidence from randomized controlled trials and observational studies, the review emphasizes the superiority of HDF as a hemodialysis modality and advocates for its positioning as the gold standard in treatment. However, it acknowledges the need for extensive research to define the role of HDx in comprehensive treatment approaches in individuals undergoing dialysis. The synthesis of current knowledge underscores the importance of ongoing exploration and research to refine hemodialysis practices for optimal patient outcomes. Full article
(This article belongs to the Special Issue Application of Hemodialysis in the Treatment of Kidney Diseases)
27 pages, 1086 KiB  
Article
Application of Recursive Theory of Slow Viscoelastic Flow to the Hydrodynamics of Second-Order Fluid Flowing through a Uniformly Porous Circular Tube
by Kaleemullah Bhatti, Abdul Majeed Siddiqui and Zarqa Bano
Mathematics 2020, 8(7), 1170; https://doi.org/10.3390/math8071170 - 16 Jul 2020
Cited by 8 | Viewed by 2571
Abstract
Slow velocity fluid flow problems in small diameter channels have many important applications in science and industry. Many researchers have modeled the flow through renal tubule, hollow fiber dialyzer and flat plate dialyzer using Navier Stokes equations with suitable simplifying assumptions and boundary [...] Read more.
Slow velocity fluid flow problems in small diameter channels have many important applications in science and industry. Many researchers have modeled the flow through renal tubule, hollow fiber dialyzer and flat plate dialyzer using Navier Stokes equations with suitable simplifying assumptions and boundary conditions. The aim of this article is to investigate the hydrodynamical aspects of steady, axisymmetric and slow flow of a general second-order Rivlin-Ericksen fluid in a porous-walled circular tube with constant wall permeability. The governing compatibility equation have been derived and solved analytically for the stream function by applying Langlois recursive approach for slow viscoelastic flows. Analytical expressions for velocity components, pressure, volume flow rate, fractional reabsorption, wall shear stress and stream function have been obtained correct to third order. The effects of wall Reynolds number and certain non-Newtonian parameters have been studied and presented graphically. The obtained analytical expressions are in agreement with the existing solutions in literature if non-Newtonian parameters approach to zero. The solutions obtained in this article may be considered as a generalization to the existing work. The results indicate that there is a significant dependence of the flow variables on the wall Reynolds number and non-Newtonian parameters. Full article
Show Figures

Figure 1

14 pages, 392 KiB  
Review
Proteomic Investigations into Hemodialysis Therapy
by Mario Bonomini, Vittorio Sirolli, Luisa Pieroni, Paolo Felaco, Luigi Amoroso and Andrea Urbani
Int. J. Mol. Sci. 2015, 16(12), 29508-29521; https://doi.org/10.3390/ijms161226189 - 10 Dec 2015
Cited by 20 | Viewed by 6778
Abstract
The retention of a number of solutes that may cause adverse biochemical/biological effects, called uremic toxins, characterizes uremic syndrome. Uremia therapy is based on renal replacement therapy, hemodialysis being the most commonly used modality. The membrane contained in the hemodialyzer represents the ultimate [...] Read more.
The retention of a number of solutes that may cause adverse biochemical/biological effects, called uremic toxins, characterizes uremic syndrome. Uremia therapy is based on renal replacement therapy, hemodialysis being the most commonly used modality. The membrane contained in the hemodialyzer represents the ultimate determinant of the success and quality of hemodialysis therapy. Membrane’s performance can be evaluated in terms of removal efficiency for unwanted solutes and excess fluid, and minimization of negative interactions between the membrane material and blood components that define the membrane’s bio(in)compatibility. Given the high concentration of plasma proteins and the complexity of structural functional relationships of this class of molecules, the performance of a membrane is highly influenced by its interaction with the plasma protein repertoire. Proteomic investigations have been increasingly applied to describe the protein uremic milieu, to compare the blood purification efficiency of different dialyzer membranes or different extracorporeal techniques, and to evaluate the adsorption of plasma proteins onto hemodialysis membranes. In this article, we aim to highlight investigations in the hemodialysis setting making use of recent developments in proteomic technologies. Examples are presented of why proteomics may be helpful to nephrology and may possibly affect future directions in renal research. Full article
(This article belongs to the Special Issue Advances in Proteomic Research)
Show Figures

Graphical abstract

Back to TopTop