Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = desolvation enthalpy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2005 KB  
Article
A Structural-Reporter Group to Determine the Core Conformation of Sialyl Lewisx Mimetics
by Beatrice Wagner, Florian P. C. Binder, Xiaohua Jiang, Tobias Mühlethaler, Roland C. Preston, Said Rabbani, Martin Smieško, Oliver Schwardt and Beat Ernst
Molecules 2023, 28(6), 2595; https://doi.org/10.3390/molecules28062595 - 13 Mar 2023
Cited by 7 | Viewed by 2153
Abstract
The d-GlcNAc moiety in sialyl Lewisx (sLex, 1) acts predominantly as a linker to position the d-Gal and the l-Fuc moieties in the bioactive spatial orientation. The hypothesis has been made that the NHAc [...] Read more.
The d-GlcNAc moiety in sialyl Lewisx (sLex, 1) acts predominantly as a linker to position the d-Gal and the l-Fuc moieties in the bioactive spatial orientation. The hypothesis has been made that the NHAc group of GlcNAc pushes the fucose underneath the galactose and, thus, contributes to the stabilization of the bioactive conformation of the core of sLex (1). To test this hypothesis, GlcNAc mimetics consisting of (R,R)-1,2-cyclohexanediols substituted with alkyl and aryl substituents adjacent to the linking position of the fucose moiety were synthesized. To explore a broad range of extended and spatially demanding R-groups, an enzymatic approach for the synthesis of 3-alkyl/aryl-1,2-cyclohexanediols (3b-n) was applied. These cyclohexanediol derivatives were incorporated into the sLex mimetics 2b-n. For analyzing the relationship of affinity and core conformation, a 1H NMR structural-reporter-group concept was applied. Thus, the chemical shift of H-C5Fuc proved to be a sensitive indicator for the degree of pre-organization of the core of this class of sLex mimetics and therefore could be used to quantify the contribution of the R-groups. Full article
(This article belongs to the Special Issue Glycomimetics)
Show Figures

Graphical abstract

27 pages, 5089 KB  
Article
Comparative Insights into the Fundamental Steps Underlying Gelation of Plant and Algal Ionic Polysaccharides: Pectate and Alginate
by Sergio Paoletti and Ivan Donati
Gels 2022, 8(12), 784; https://doi.org/10.3390/gels8120784 - 29 Nov 2022
Cited by 9 | Viewed by 2392
Abstract
Pectate and alginate are among the most important biopolymers able to give rise to ionotropic gelation upon the addition of di- or multivalent counterions. The two ionic polysaccharides exhibit several common aspects of the gelation mechanism with calcium ions, the physiologically and commercially [...] Read more.
Pectate and alginate are among the most important biopolymers able to give rise to ionotropic gelation upon the addition of di- or multivalent counterions. The two ionic polysaccharides exhibit several common aspects of the gelation mechanism with calcium ions, the physiologically and commercially most relevant counterion type. The first one pertains to the role that specific Ca2+/polyion interactions play in the establishment of the ion-mediated chain/chain cross-links. Such interactions include both a specific affinity of the territorially condensed Ca2+ counterions for the polyuronate(s) and the formation of long-lasting chemical bonding (inner ion–sphere complex) of specific interchain sites accompanied by high conformational ordering. As to the first mechanism, it is dominated by the strong desolvation of the interacting ionic species, with concomitant positive variations in both enthalpy and entropy, the contribution of the latter prevailing over the former due to the favorable liberation of a very large number of water molecules of hydration. Both dilatometric and microcalorimetric data point to the higher affinity of Ca2+ for pectate than for alginate. The selective accumulation of calcium ions close to the polyanion(s) favors the onset of the second—chemical bonding—mode, which is associated with charge neutralization at the bonding site. This mode coincides with the largely accepted “egg-box” model for the calcium-mediated interchain junction of pectate and alginate. A new approach was devised for the calculation of the fraction of chemically bound divalent ions; it was based on the available circular dichroism data (further supported by scattering and viscosity results) and successfully tested by comparison with an independently determined fraction in the case of pectate. In detail, the strong bonding mode manifests in two sequential bonding modes. The first one (at low concentrations of added Ca2+ ions) entails a cross-link in which only one calcium ions is bracketed in a “twisted” egg-box between two chains; upon further counterion addition, a series of nearest-neighboring “perfect” egg-box structures develops. Both dilatometric and microcalorimetric changes associated with the latter chemical bonding modes are quantitatively larger for pectate than for alginate; clearly the latter polyuronate suffers from the relevant presence of the weakly calcium-binding mannuronic acid repeating units. Light-scattering experiments provided a clear-cut demonstration of the intermolecular bonding of calcium ions from the very beginning of the linker addition. Full article
(This article belongs to the Special Issue Polymer Networks and Gels 2022)
Show Figures

Figure 1

11 pages, 1239 KB  
Article
From Solution Studies of Pharmaceuticals (Aspirin and Related Compounds) to the Thermodynamics of Aspirin-β-Cyclodextrin Interaction in water and N,N-Dimethylformamide
by Angela F. Danil de Namor, Alexandros Cambanis, Nawal Al Hakawati and Rasha Khalife
Int. J. Mol. Sci. 2022, 23(19), 11750; https://doi.org/10.3390/ijms231911750 - 4 Oct 2022
Cited by 2 | Viewed by 3204
Abstract
The solution behavior of pharmaceuticals (acetylsalicylic acid, 4-acetoxybenzoic acid and 5-acetylsalicylic acid) in water and N,N-Dimethylformamide (DMF) at 298.15 K were investigated through solubility, conductance and calorimetric measurements. Taking into account the formation of ion pairs of these pharmaceuticals in water, the solution [...] Read more.
The solution behavior of pharmaceuticals (acetylsalicylic acid, 4-acetoxybenzoic acid and 5-acetylsalicylic acid) in water and N,N-Dimethylformamide (DMF) at 298.15 K were investigated through solubility, conductance and calorimetric measurements. Taking into account the formation of ion pairs of these pharmaceuticals in water, the solution Gibbs energies of the dissociated electrolytes in this solvent were calculated. Thus, the solution thermodynamics of these compounds in water are reported using enthalpy data obtained by calorimetry. These pharmaceuticals undergo solvation when exposed to a saturated atmosphere of DMF. As the composition of the solid is not the same as that in solution, the Gibbs energy of the solutions of these compounds could not be obtained; only enthalpy data are reported. The thermodynamics of the interaction of acetylsalicylic acid (aspirin) with β-cyclodextrin in water and DMF is fully discussed, emphasizing the two different processes that take place in water at the two different pHs. In all cases, the favorable Gibbs energies for these processes are entropically controlled, mainly resulting from the higher dehydration/desolvation that the receptor undergoes upon interaction with the guest. Full article
(This article belongs to the Special Issue Recent Advances in Biomolecular Recognition II)
Show Figures

Figure 1

14 pages, 4242 KB  
Article
Entropy Effects in Intermolecular Associations of Crown-Ethers and Cyclodextrins with Amino Acids in Aqueous and in Non-Aqueous Media
by Tatyana Usacheva, Irina Terekhova, Diana Alister, Mikhail Agafonov, Natalya Kuranova, Dmitry Tyurin and Valentin Sharnin
Entropy 2022, 24(1), 24; https://doi.org/10.3390/e24010024 - 24 Dec 2021
Cited by 7 | Viewed by 3455
Abstract
The analysis of the ratios of entropy and enthalpy characteristics and their contributions to the change in the Gibbs energy of intermolecular interactions of crown ethers and cyclodextrins with amino acids is carried out. Two different types of macrocycles were chosen for examination: [...] Read more.
The analysis of the ratios of entropy and enthalpy characteristics and their contributions to the change in the Gibbs energy of intermolecular interactions of crown ethers and cyclodextrins with amino acids is carried out. Two different types of macrocycles were chosen for examination: crown ethers with a hydrophilic interior and cyclodextrins with a hydrophobic inner cavity and a hydrophilic exterior. The thermodynamics of complex formation of crown ethers and cyclodextrins with amino acids in water and aqueous-organic solvents of variable composition was examined. The contributions of the entropy solvation of complexes of 18-crown-6 with glycine, alanine, phenylalanine to the change in the entropy of complexation in water-ethanol and water-dimethyl sulfoxide solvents was calculated and analyzed. It was found that the ratios of the entropy and enthalpy solvation of the reagents for these systems have similar trends when moving from water to aqueous-organic mixtures. The relationship between the thermodynamic characteristics and structural features of the complexation processes between cyclodextrins and amino acids has been established. The thermodynamic enthalpy–entropy compensation effect was revealed, and its features for complexation of cyclodextrins and 18-crown-6 were considered. It was concluded that, based on the thermodynamic parameters of molecular complexation, one could judge the mode of the formation of complexes, the main driving forces of the interactions, and the degree of desolvation. Full article
Show Figures

Figure 1

18 pages, 20737 KB  
Article
Kinetics and Thermodynamics of DNA Processing by Wild Type DNA-Glycosylase Endo III and Its Catalytically Inactive Mutant Forms
by Olga A. Kladova, Lev N. Krasnoperov, Nikita A. Kuznetsov and Olga S. Fedorova
Genes 2018, 9(4), 190; https://doi.org/10.3390/genes9040190 - 30 Mar 2018
Cited by 18 | Viewed by 4434
Abstract
Endonuclease III (Endo III or Nth) is one of the key enzymes responsible for initiating the base excision repair of oxidized or reduced pyrimidine bases in DNA. In this study, a thermodynamic analysis of structural rearrangements of the specific and nonspecific DNA-duplexes during [...] Read more.
Endonuclease III (Endo III or Nth) is one of the key enzymes responsible for initiating the base excision repair of oxidized or reduced pyrimidine bases in DNA. In this study, a thermodynamic analysis of structural rearrangements of the specific and nonspecific DNA-duplexes during their interaction with Endo III is performed based on stopped-flow kinetic data. 1,3-diaza-2-oxophenoxazine (tCO), a fluorescent analog of the natural nucleobase cytosine, is used to record multistep DNA binding and lesion recognition within a temperature range (5–37 °C). Standard Gibbs energy, enthalpy, and entropy of the specific steps are derived from kinetic data using Van’t Hoff plots. The data suggest that enthalpy-driven exothermic 5,6-dihydrouracil (DHU) recognition and desolvation-accompanied entropy-driven adjustment of the enzyme–substrate complex into a catalytically active state play equally important parts in the overall process. The roles of catalytically significant amino acids Lys120 and Asp138 in the DNA lesion recognition and catalysis are identified. Lys120 participates not only in the catalytic steps but also in the processes of local duplex distortion, whereas substitution Asp138Ala leads to a complete loss of the ability of Endo III to distort a DNA double chain during enzyme–DNA complex formation. Full article
(This article belongs to the Special Issue Nucleic Acid Dynamics and Structure)
Show Figures

Figure 1

Back to TopTop