Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = dermal lymphatic microvascular endothelial cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4753 KB  
Article
Lymphatic Endothelial-to-Myofibroblast Transition: A Potential New Mechanism Underlying Skin Fibrosis in Systemic Sclerosis
by Irene Rosa, Eloisa Romano, Bianca Saveria Fioretto, Khadija El Aoufy, Silvia Bellando-Randone, Marco Matucci-Cerinic and Mirko Manetti
Cells 2023, 12(17), 2195; https://doi.org/10.3390/cells12172195 - 1 Sep 2023
Cited by 10 | Viewed by 2940
Abstract
At present, only a few reports have addressed the possible contribution of the lymphatic vascular system to the pathogenesis of systemic sclerosis (SSc). Based on the evidence that blood vascular endothelial cells can undertake the endothelial-to-myofibroblast transition (EndMT) contributing to SSc-related skin fibrosis, [...] Read more.
At present, only a few reports have addressed the possible contribution of the lymphatic vascular system to the pathogenesis of systemic sclerosis (SSc). Based on the evidence that blood vascular endothelial cells can undertake the endothelial-to-myofibroblast transition (EndMT) contributing to SSc-related skin fibrosis, we herein investigated whether the lymphatic endothelium might represent an additional source of profibrotic myofibroblasts through a lymphatic EndMT (Ly-EndMT) process. Skin sections from patients with SSc and healthy donors were immunostained for the lymphatic endothelial cell-specific marker lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1) in combination with α-smooth muscle actin (α-SMA) as the main marker of myofibroblasts. Commercial human adult dermal lymphatic microvascular endothelial cells (HdLy-MVECs) were challenged with recombinant human transforming growth factor-β1 (TGFβ1) or serum from SSc patients and healthy donors. The expression of lymphatic endothelial cell/myofibroblast markers was measured by quantitative real-time PCR, Western blotting and immunofluorescence. Collagen gel contraction assay was performed to assess myofibroblast-like cell contractile ability. Lymphatic endothelial cells in intermediate stages of the Ly-EndMT process (i.e., coexpressing LYVE-1 and α-SMA) were found exclusively in the fibrotic skin of SSc patients. The culturing of HdLy-MVECs with SSc serum or profibrotic TGFβ1 led to the acquisition of a myofibroblast-like morphofunctional phenotype, as well as the downregulation of lymphatic endothelial cell-specific markers and the parallel upregulation of myofibroblast markers. In SSc, the Ly-EndMT might represent a previously overlooked pathogenetic process bridging peripheral microlymphatic dysfunction and skin fibrosis development. Full article
(This article belongs to the Special Issue The Role of Epithelial Cells in Scleroderma)
Show Figures

Figure 1

27 pages, 5397 KB  
Article
The Role of CD200–CD200 Receptor in Human Blood and Lymphatic Endothelial Cells in the Regulation of Skin Tissue Inflammation
by Dominic Rütsche, Katarzyna Michalak-Micka, Dominika Zielinska, Hannah Moll, Ueli Moehrlen, Thomas Biedermann and Agnes S. Klar
Cells 2022, 11(6), 1055; https://doi.org/10.3390/cells11061055 - 21 Mar 2022
Cited by 9 | Viewed by 5376
Abstract
CD200 is a cell membrane glycoprotein that interacts with its structurally related receptor (CD200R) expressed on immune cells. We characterized CD200–CD200R interactions in human adult/juvenile (j/a) and fetal (f) skin and in in vivo prevascularized skin substitutes (vascDESS) prepared by co-culturing human dermal [...] Read more.
CD200 is a cell membrane glycoprotein that interacts with its structurally related receptor (CD200R) expressed on immune cells. We characterized CD200–CD200R interactions in human adult/juvenile (j/a) and fetal (f) skin and in in vivo prevascularized skin substitutes (vascDESS) prepared by co-culturing human dermal microvascular endothelial cells (HDMEC), containing both blood (BEC) and lymphatic (LEC) EC. We detected the highest expression of CD200 on lymphatic capillaries in j/a and f skin as well as in vascDESS in vivo, whereas it was only weakly expressed on blood capillaries. Notably, the highest CD200 levels were detected on LEC with enhanced Podoplanin expression, while reduced expression was observed on Podoplanin-low LEC. Further, qRT-PCR analysis revealed upregulated expression of some chemokines, including CC-chemokine ligand 21 (CCL21) in j/aCD200+ LEC, as compared to j/aCD200 LEC. The expression of CD200R was mainly detected on myeloid cells such as granulocytes, monocytes/macrophages, T cells in human peripheral blood, and human and rat skin. Functional immunoassays demonstrated specific binding of skin-derived CD200+ HDMEC to myeloid CD200R+ cells in vitro. Importantly, we confirmed enhanced CD200–CD200R interaction in vascDESS in vivo. We concluded that the CD200–CD200R axis plays a crucial role in regulating tissue inflammation during skin wound healing. Full article
(This article belongs to the Collection Molecular Determinants of Skin Integrity)
Show Figures

Figure 1

19 pages, 52308 KB  
Article
Expression Profile of CD157 Reveals Functional Heterogeneity of Capillaries in Human Dermal Skin
by Katarzyna Michalak-Micka, Dominic Rütsche, Lukas Johner, Ueli Moehrlen, Thomas Biedermann and Agnes S. Klar
Biomedicines 2022, 10(3), 676; https://doi.org/10.3390/biomedicines10030676 - 15 Mar 2022
Cited by 4 | Viewed by 3293
Abstract
CD157 acts as a receptor, regulating leukocyte trafficking and the binding of extracellular matrix components. However, the expression pattern and the role of CD157 in human blood (BEC) and the lymphatic endothelial cells (LEC) of human dermal microvascular cells (HDMEC), remain elusive. We [...] Read more.
CD157 acts as a receptor, regulating leukocyte trafficking and the binding of extracellular matrix components. However, the expression pattern and the role of CD157 in human blood (BEC) and the lymphatic endothelial cells (LEC) of human dermal microvascular cells (HDMEC), remain elusive. We demonstrated constitutive expression of CD157 on BEC and LEC, in fetal and juvenile/adult skin, in situ, as well as in isolated HDMEC. Interestingly, CD157 epitopes were mostly localized on BEC, co-expressing high levels of CD31 (CD31High), as compared to CD31Low BEC, whereas the podoplanin expression level on LEC did not affect CD157. Cultured HDMEC exhibited significantly higher numbers of CD157-positive LEC, as compared to BEC. Interestingly, separated CD157 and CD157+ HDMEC demonstrated no significant differences in clonal expansion in vitro, but they showed distinct expression levels of cell adhesion molecules, before and after cytokine stimulation in vitro. In particular, we proved the enhanced and specific adherence of CD11b-expressing human blood myeloid cells to CD157+ HDMEC fraction, using an in vitro immune-binding assay. Indeed, CD157 was also involved in chemotaxis and adhesion of CD11b/c monocytes/neutrophils in prevascularized dermo–epidermal skin substitutes (vascDESS) in vivo. Thus, our data attribute specific roles to endothelial CD157, in the regulation of innate immunity during inflammation. Full article
Show Figures

Figure 1

16 pages, 2121 KB  
Article
Systemic Sclerosis Serum Significantly Impairs the Multi-Step Lymphangiogenic Process: In Vitro Evidence
by Mirko Manetti, Eloisa Romano, Irene Rosa, Bianca Saveria Fioretto, Serena Guiducci, Silvia Bellando-Randone, Erika Pigatto, Franco Cozzi, Lidia Ibba-Manneschi and Marco Matucci-Cerinic
Int. J. Mol. Sci. 2019, 20(24), 6189; https://doi.org/10.3390/ijms20246189 - 7 Dec 2019
Cited by 11 | Viewed by 3678
Abstract
In systemic sclerosis (SSc), the possible involvement of lymphatic microcirculation and lymphangiogenesis has traditionally been overshadowed by the greater emphasis placed on dysfunctional blood vascular system and angiogenesis. In the present in vitro study, we explore for the first time whether the SSc [...] Read more.
In systemic sclerosis (SSc), the possible involvement of lymphatic microcirculation and lymphangiogenesis has traditionally been overshadowed by the greater emphasis placed on dysfunctional blood vascular system and angiogenesis. In the present in vitro study, we explore for the first time whether the SSc microenvironment may interfere with lymphangiogenesis, a complex, multi-step process in which lymphatic microvascular endothelial cells (LMVECs) sprout, migrate, and proliferate to generate new lymphatic capillaries. Normal human adult dermal LMVECs from three donors were treated with serum from SSc patients (n = 8), serum from healthy individuals (n = 8), or recombinant human vascular endothelial growth factor (VEGF)-C as a positive control for lymphangiogenesis. Cell proliferation, Boyden chamber Matrigel chemoinvasion, wound healing capacity, and lymphatic capillary morphogenesis on Geltrex were assayed. VEGF-C serum levels were measured by enzyme-linked immunosorbent assay. Gene and protein expression levels of the lymphangiogenic orchestrators VEGF receptor-3 (VEGFR-3)/Flt-4 and neuropilin-2 (NRP-2) were determined by real-time PCR and Western blotting, respectively. Conditioning with SSc serum significantly inhibited LMVEC proliferation, Matrigel invasion, and wound healing capacity with respect to healthy serum. The ability of LMVECs to form lymphatic tubes on Geltrex was also severely compromised in the presence of SSc serum. VEGF-C levels were comparable in SSc and healthy sera. Treatment with SSc serum resulted in a significant downregulation of both VEGFR-3/Flt-4 and NRP-2 mRNA and protein levels. In SSc, the pathologic environment severely hampers every lymphangiogenesis step, likely through the reduction of pro-lymphangiogenic VEGFR-3/NRP-2 co-receptor signaling. The impairment of the lymphangiogenic process opens a new scenario underlying SSc vascular pathophysiology, which is worth investigating further. Full article
Show Figures

Figure 1

Back to TopTop