Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = dendritic cell-derived exosomes (DEX)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1655 KiB  
Article
The Design of a Multistage Monitoring Protocol for Dendritic Cell-Derived Exosome (DEX) Immunotherapy: A Conceptual Framework for Molecular Quality Control and Immune Profiling
by Ramón Gutiérrez-Sandoval, Francisco Gutiérrez-Castro, Natalia Muñoz-Godoy, Ider Rivadeneira, Adolay Sobarzo, Luis Alarcón, Wilson Dorado, Andy Lagos, Diego Montenegro, Ignacio Muñoz, Rodrigo Aguilera, Jordan Iturra, Francisco Krakowiak, Cristián Peña-Vargas and Andrés Toledo
Int. J. Mol. Sci. 2025, 26(12), 5444; https://doi.org/10.3390/ijms26125444 - 6 Jun 2025
Cited by 1 | Viewed by 521
Abstract
The increasing complexity of dendritic cell (DC)-derived exosome (DEX) immunotherapy demands structured monitoring protocols capable of translating molecular activity into actionable clinical outputs. This study proposes a standardized, multistage immunomonitoring framework designed to evaluate immune activation, cytokine polarization, and product integrity in DEX-based [...] Read more.
The increasing complexity of dendritic cell (DC)-derived exosome (DEX) immunotherapy demands structured monitoring protocols capable of translating molecular activity into actionable clinical outputs. This study proposes a standardized, multistage immunomonitoring framework designed to evaluate immune activation, cytokine polarization, and product integrity in DEX-based therapies. The protocol integrates open access methodologies—flow cytometry, cytometric bead array (CBA), and Western blotting—to assess CD69/CD25 activation, Th1/Th2/Th17 cytokine profiles, and vesicle identity across distinct checkpoints. These outputs are consolidated within the Structured Immunophenotypic Traceability Platform (STIP), which applies logic-based classifications (Type I–III) to support reproducible stratification of immune responses. Functional validation was performed through ex vivo co-culture models, enabling real-time interpretation of immune polarization, cytotoxic potential, and batch consistency. These outputs are supported by previous experimental validations published in Cancers and Biomedicines (2025), where PLPC and DC-derived vesicles demonstrated immunological consistency and a phenotypic stratification capacity. This approach provides a scalable monitoring structure that can support personalized treatment decisions, quality assurance workflows, and integration into regulatory documentation (e.g., CTD Module 5.3) for early-phase, non-pharmacodynamic immunotherapies. This conceptual protocol does not aim to demonstrate therapeutic efficacy but to provide a reproducible documentation framework for real-world immune monitoring and regulatory alignment in vesicle-based immunotherapy. Full article
Show Figures

Figure 1

30 pages, 4419 KiB  
Article
Beyond Exosomes: An Ultrapurified Phospholipoproteic Complex (PLPC) as a Scalable Immunomodulatory Platform for Reprogramming Immune Suppression in Metastatic Cancer
by Ramon Gutierrez-Sandoval, Francisco Gutiérrez-Castro, Natalia Muñoz-Godoy, Ider Rivadeneira, Adolay Sobarzo, Jordan Iturra, Francisco Krakowiak, Luis Alarcón, Wilson Dorado, Andy Lagos, Diego Montenegro, Ignacio Muñoz, Rodrigo Aguilera and Andres Toledo
Cancers 2025, 17(10), 1658; https://doi.org/10.3390/cancers17101658 - 14 May 2025
Cited by 2 | Viewed by 875
Abstract
Background/Objectives: Dendritic-cell-derived exosomes (DEXs) have demonstrated immunostimulatory potential in cancer immunotherapy, yet their clinical application remains constrained by their cryodependence, compositional heterogeneity, and limited scalability. To address these limitations, we developed an ultrapurified phospholipoproteic complex (PLPC), a dendritic-secretome-derived formulation stabilized through ultracentrifugation and [...] Read more.
Background/Objectives: Dendritic-cell-derived exosomes (DEXs) have demonstrated immunostimulatory potential in cancer immunotherapy, yet their clinical application remains constrained by their cryodependence, compositional heterogeneity, and limited scalability. To address these limitations, we developed an ultrapurified phospholipoproteic complex (PLPC), a dendritic-secretome-derived formulation stabilized through ultracentrifugation and lyophilization that has been engineered to preserve its immunological function and structural integrity. Methods: Secretomes were processed under four conditions (fresh, concentrated, cryopreserved, and lyophilized PLPC) and compared through proteomic and functional profiling. Mass spectrometry (LC-MS/MS) analysis revealed that the PLPC retained a significantly enriched set of immunoregulatory proteins—including QSOX1, CCL22, and SDCBP—and exhibited superior preservation of post-translational modifications. Results: Ex vivo co-culture assays with human peripheral blood mononuclear cells (PBMCs) demonstrated that the PLPC induced robust secretion of IFN-γ, TNF-α, and IL-6 while concurrently suppressing IL-10, achieving an IFN-γ/IL-10 ratio exceeding 3.5. Flow cytometry confirmed the substantial activation of both CD4⁺ and CD8⁺ T cells, while apoptosis assays showed selective tumor cytotoxicity (>55% tumor apoptosis) with minimal impact on non-malignant cells (>92% viability). Conclusions: These findings establish the PLPC as a reproducible, Th1-polarizing immunomodulator with selective antitumor activity, ambient-temperature stability, and compatibility with non-invasive administration. Overall, the PLPC emerges as a scalable, cell-free immunotherapeutic platform with translational potential to reprogram immune suppression in metastatic therapy-resistant cancer settings. Full article
(This article belongs to the Special Issue Exosomes in Cancer Metastasis)
Show Figures

Figure 1

16 pages, 1306 KiB  
Review
Dendritic Cell-Derived Exosomes in Cancer Immunotherapy
by Shumin Luo, Jing Chen, Fang Xu, Huan Chen, Yiru Li and Weihua Li
Pharmaceutics 2023, 15(8), 2070; https://doi.org/10.3390/pharmaceutics15082070 - 1 Aug 2023
Cited by 45 | Viewed by 4101
Abstract
Exosomes are nanoscale vesicles released by diverse types of cells for complex intercellular communication. Numerous studies have shown that exosomes can regulate the body’s immune response to tumor cells and interfere with the tumor microenvironment (TME). In clinical trials on dendritic cell (DC)-based [...] Read more.
Exosomes are nanoscale vesicles released by diverse types of cells for complex intercellular communication. Numerous studies have shown that exosomes can regulate the body’s immune response to tumor cells and interfere with the tumor microenvironment (TME). In clinical trials on dendritic cell (DC)-based antitumor vaccines, no satisfactory results have been achieved. However, recent studies suggested that DC-derived exosomes (DEXs) may be superior to DC-based antitumor vaccines in avoiding tumor cell-mediated immunosuppression. DEXs contain multiple DC-derived surface markers that capture tumor-associated antigens (TAAs) and promote immune cell-dependent tumor rejection. These findings indicate the necessity of the further development and improvement of DEX-based cell-free vaccines to complement chemotherapy, radiotherapy, and other immunotherapies. In this review, we highlighted the recent progress of DEXs in cancer immunotherapy, particularly by concentrating on landmark studies and the biological characterization of DEXs, and we summarized their important role in the tumor immune microenvironment (TIME) and clinical application in targeted cancer immunotherapy. This review could enhance comprehension of advances in cancer immunotherapy and contribute to the elucidation of how DEXs regulate the TIME, thereby providing a reference for utilizing DEX-based vaccines in clinical practice. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

12 pages, 2266 KiB  
Article
CCR7 Mediates Dendritic-Cell-Derived Exosome Migration and Improves Cardiac Function after Myocardial Infarction
by Youming Zhang, Wei Gao, Jie Yuan, Xin Zhong, Kang Yao, Rong Luo and Haibo Liu
Pharmaceutics 2023, 15(2), 461; https://doi.org/10.3390/pharmaceutics15020461 - 30 Jan 2023
Cited by 14 | Viewed by 2571
Abstract
Dendritic cells (DCs) play key roles in promoting wound healing after myocardial infarction (MI). Our previous studies have shown that exosomes derived from DCs (DEXs) could migrate to lymphoid tissue and improve cardiac function post-MI by activating CD4+ T cells; however, the [...] Read more.
Dendritic cells (DCs) play key roles in promoting wound healing after myocardial infarction (MI). Our previous studies have shown that exosomes derived from DCs (DEXs) could migrate to lymphoid tissue and improve cardiac function post-MI by activating CD4+ T cells; however, the mechanism of DEXs’ migration to lymphoid tissue and the improvement of cardiac function are still unknown. In our study, we found that CCR7 expression significantly increased in MI-DEXs compared with control-DEXs; meanwhile, CCL19 and CCL21, the ligands of CCR7, significantly increased in the serum of MI-model mice. Subsequently, we overexpressed and knocked down CCR7 in MI-DEXs and found that overexpressed CCR7 enhanced the migration of MI-DEXs to the spleen; however, CCR7 knockdown attenuated MI-DEXs’ migration according to near-IR fluorescence imaging. Furthermore, overexpressed CCR7 in MI-DEXs enhanced the MI-DEXs’ improvement of cardiac function after MI; however, CCR7-knockdown MI-DEXs attenuated this improvement. In addition, after DEXs’ migration to the spleen, MI-DEXs activated CD4+ T cells and induced the expression of IL-4 and IL-10, which were significantly increased in the MI-DEX group compared with the control group. In conclusion, CCR7 could mediate DEXs’ migration to the spleen and improve cardiac function after MI, and we found that the mechanism was partly via activation of CD4+ T cells and secretion of IL-4 and IL-10. Our study presented an innovative method for improving cardiac function by enhancing the migration ability of MI-DEXs after MI, while CCR7 could be a potential candidate for MI-DEX bioengineering to enhance migration. Full article
(This article belongs to the Special Issue Advances of Membrane Vesicles in Drug Delivery Systems)
Show Figures

Figure 1

33 pages, 9929 KiB  
Review
The Dichotomy of Tumor Exosomes (TEX) in Cancer Immunity: Is It All in the ConTEXt?
by Katherine E. Kunigelis and Michael W. Graner
Vaccines 2015, 3(4), 1019-1051; https://doi.org/10.3390/vaccines3041019 - 17 Dec 2015
Cited by 59 | Viewed by 8489
Abstract
Exosomes are virus-sized nanoparticles (30–130 nm) formed intracellularly as intravesicular bodies/intralumenal vesicles within maturing endosomes (“multivesicular bodies”, MVBs). If MVBs fuse with the cell’s plasma membrane, the interior vesicles may be released extracellularly, and are termed “exosomes”. The protein cargo of exosomes consists [...] Read more.
Exosomes are virus-sized nanoparticles (30–130 nm) formed intracellularly as intravesicular bodies/intralumenal vesicles within maturing endosomes (“multivesicular bodies”, MVBs). If MVBs fuse with the cell’s plasma membrane, the interior vesicles may be released extracellularly, and are termed “exosomes”. The protein cargo of exosomes consists of cytosolic, membrane, and extracellular proteins, along with membrane-derived lipids, and an extraordinary variety of nucleic acids. As such, exosomes reflect the status and identity of the parent cell, and are considered as tiny cellular surrogates. Because of this closely entwined relationship between exosome content and the source/status of the parental cell, conceivably exosomes could be used as vaccines against various pathologies, as they contain antigens associated with a given disease, e.g., cancer. Tumor-derived exosomes (TEX) have been shown to be potent anticancer vaccines in animal models, driving antigen-specific T and B cell responses, but much recent literature concerning TEX strongly places the vesicles as powerfully immunosuppressive. This dichotomy suggests that the context in which the immune system encounters TEX is critical in determining immune stimulation versus immunosuppression. Here, we review literature on both sides of this immune coin, and suggest that it may be time to revisit the concept of TEX as anticancer vaccines in clinical settings. Full article
(This article belongs to the Special Issue Nanoparticle-Based Vaccines)
Show Figures

Figure 1

Back to TopTop