Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = defluidization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7347 KB  
Article
Experimental Study of Fluidization and Defluidization Processes in Sand Bed Induced by a Leaking Pipe
by Huaqing Wang, Zhaolin Zheng, Tingchao Yu, Yiyi Ma and Yiping Zhang
Appl. Sci. 2025, 15(17), 9618; https://doi.org/10.3390/app15179618 - 1 Sep 2025
Cited by 1 | Viewed by 941
Abstract
Underground pressurized pipe leakage can induce sand fluidization, leading to ground collapses in urban areas. Additionally, the defluidization process is one of the main causes of sinkholes. In this study, a physical model test was conducted to examine sand bed fluidization and defluidization [...] Read more.
Underground pressurized pipe leakage can induce sand fluidization, leading to ground collapses in urban areas. Additionally, the defluidization process is one of the main causes of sinkholes. In this study, a physical model test was conducted to examine sand bed fluidization and defluidization through a slot, which allowed precise control of the water flow rate in increments of 10 mL/s. The sand layer movement during the experiments was recorded, and the pressure field was accurately measured. The fluidization and defluidization processes were classified into five stages: fluidization static bed, internal fluidization, surface fluidization, internal defluidization, and defluidization static bed. Subsequently, the static bed stage included slow fluidization and fast fluidization, with the former driven by seepage and the latter involving densification and upward movement of sand particles above the orifice. Fluidization initiated at 240 mL/s when the sand particles near the orifice were compressed to approximately minimum porosity 0.37. The head losses comprised orifice head loss, seepage head loss, and vortex head loss, each exhibiting different variation patterns with the water flow rate. Hysteresis was observed in the cavity height curve, attributed to the arching effect. The findings of this study contribute to a more comprehensive understanding of effective strategies for preventing ground collapse. Full article
(This article belongs to the Special Issue Sediment Transport and Infrastructure Scour)
Show Figures

Figure 1

13 pages, 2345 KB  
Article
Effect of Al2O3 Particle Addition on Fluidized Bed Thermochemical Heat Storage Performance of Limestone: From Instability Mitigation to Efficiency Enhancement
by Hongmei Yin, Yang Liu, Liguo Yang, Yingjie Li, Xiaoyi Zhu, Lei Zhang, Yu Ruan, Ming Ma and Xiaoxu Fan
Energies 2025, 18(7), 1791; https://doi.org/10.3390/en18071791 - 2 Apr 2025
Viewed by 555
Abstract
This study elucidates the mechanism of fluidization instability during limestone carbonation under a 100% CO2 atmosphere and determines the influence of Al2O3 fluidization aids (dosage and particle size) on exothermic performance. The experiments demonstrate that rapid CO2 absorption [...] Read more.
This study elucidates the mechanism of fluidization instability during limestone carbonation under a 100% CO2 atmosphere and determines the influence of Al2O3 fluidization aids (dosage and particle size) on exothermic performance. The experiments demonstrate that rapid CO2 absorption in the emulsion phase, coupled with insufficient gas replenishment from the bubble phase, disrupts the balance between drag force and buoyancy, leading to localized defluidization. This instability impedes gas exchange between the bubble and emulsion phases, resulting in bubble coalescence and channeling across the bed. The fluidization instability reduces the maximum exothermic temperature and causes significant temperature heterogeneity in the bed. With repeated thermal cycles (20 cycles), the CO2 absorption capacity of limestone diminishes (the effective conversion rate drops to 0.25), and the instability disappears. The addition of 5wt.% Al2O3 (particle size: 0.05–0.075 mm) stabilizes the fluidization state during carbonation, significantly homogenizing the bed temperature distribution, with maximum and average temperature differentials reduced by 63% and 89%, respectively, compared to pure limestone systems. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

18 pages, 8034 KB  
Article
In-Line Detection of Bed Fluidity in Gas–Solid Fluidized Beds Using Near-Infrared Spectroscopy
by Hao Fu, Kaixuan Teng, Jie Zhao, Sheng Zhang and Haibin Qu
Pharmaceutics 2023, 15(9), 2246; https://doi.org/10.3390/pharmaceutics15092246 - 30 Aug 2023
Cited by 4 | Viewed by 1912
Abstract
A novel approach was developed to detect bed fluidity in gas–solid fluidized beds using diffuse reflectance near-infrared (NIR) spectroscopy. Because the flow dynamics of gas and solid phases are closely associated with the fluidization state, the fluidization quality can be evaluated through hydrodynamic [...] Read more.
A novel approach was developed to detect bed fluidity in gas–solid fluidized beds using diffuse reflectance near-infrared (NIR) spectroscopy. Because the flow dynamics of gas and solid phases are closely associated with the fluidization state, the fluidization quality can be evaluated through hydrodynamic characterization. In this study, the baseline level of NIR spectra was used to quantify the voidage of the fluidized bed. Two indicators derived from the NIR baseline fluctuation profiles were investigated to characterize bed fluidity, named bubble proportion and skewness. To establish a robust fluidity evaluation method, the relationships between the indicators and bed fluidity were investigated under different conditions firstly, including static bed height and average particle size. Then, a generalized threshold was identified to distinguish poor and good bed fluidity, ensuring that the probability of the α- and β-errors was less than 15% regardless of material conditions. The results show that both indicators were sensitive to changes in bed fluidity under the investigated conditions. The indicator of skewness was qualified to detect bed fluidity under varied conditions with a robust threshold of 1.20. Furthermore, the developed NIR method was successfully applied to monitor bed fluidity and for early warning of defluidization in a laboratory-scale fluidized bed granulation process. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Graphical abstract

19 pages, 11884 KB  
Article
Deagglomeration of Ultrafine Hydrophilic Nanopowder Using Low-Frequency Pulsed Fluidization
by Ebrahim H. Al-Ghurabi, Mohammed Shahabuddin, Nadavala Siva Kumar and Mohammad Asif
Nanomaterials 2020, 10(2), 388; https://doi.org/10.3390/nano10020388 - 23 Feb 2020
Cited by 19 | Viewed by 3391
Abstract
Low-frequency flow pulsations were utilized to improve the hydrodynamics of the fluidized bed of hydrophilic ultrafine nanosilica powder with strong agglomeration behavior. A gradual fluidization of unassisted fluidized bed through stepwise velocity change was carried out over a wide range of velocities followed [...] Read more.
Low-frequency flow pulsations were utilized to improve the hydrodynamics of the fluidized bed of hydrophilic ultrafine nanosilica powder with strong agglomeration behavior. A gradual fluidization of unassisted fluidized bed through stepwise velocity change was carried out over a wide range of velocities followed by a gradual defluidization process. Bed dynamics in different regions of the fluidized bed were carefully monitored using fast and sensitive pressure transducers. Next, 0.05-Hz square-wave flow pulsation was introduced, and the fluidization behavior of the pulsed fluidized bed was rigorously characterized to delineate its effect on the bed hydrodynamics by comparing it with one of the unassisted fluidized bed. Flow pulsations caused a substantial decrease in minimum fluidization velocity and effective agglomerate diameter. The frequencies and amplitudes of various events in different fluidized bed regions were determined by performing frequency domain analysis on real-time bed transient data. The pulsations and their effects promoted deagglomeration and improved homogeneity of the pulsed fluidized bed. Full article
Show Figures

Figure 1

15 pages, 6635 KB  
Article
Investigating Agglomeration Tendency of Co-Gasification between High Alkali Biomass and Woody Biomass in a Bubbling Fluidized Bed System
by Tanakorn Kittivech and Suneerat Fukuda
Energies 2020, 13(1), 56; https://doi.org/10.3390/en13010056 - 20 Dec 2019
Cited by 10 | Viewed by 3742
Abstract
Palm empty fruit bunches (EFB) is known as problematic biomass due to its high alkali content, i.e., more than half of inorganic matter is potassium (K). EFB when used as a fuel in fluidized beds with silica sand as bed material could form [...] Read more.
Palm empty fruit bunches (EFB) is known as problematic biomass due to its high alkali content, i.e., more than half of inorganic matter is potassium (K). EFB when used as a fuel in fluidized beds with silica sand as bed material could form the sticky compound K2O·nSiO2 starting at around 750 °C and adhere bed particles together, resulting in bed agglomeration. Blending EFB with rubber wood sawdust (RWS) could improve the chemical properties and consequent ash composition of the blended fuel. In this study, RWS was blended with EFB at three ratios: RWS:EFB = 25:75, RWS:EFB = 50:50, and RWS:EFB = 75:25. Adding RWS to the fuel prolonged de-fluidization time. The high content of CaO in the RWS ash acted as an inhibitor to prevent the formation of K2O·nSiO2 and, instead, enhanced the formation of K2CO3, a higher melting point compound, which reduced bed agglomeration. During the experiment using RWS:EFB = 75:25, no bed agglomeration was found. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

21 pages, 3227 KB  
Article
Towards Circular Economy Solutions for The Management of Rice Processing Residues to Bioenergy via Gasification
by I. Vaskalis, V. Skoulou, G. Stavropoulos and A. Zabaniotou
Sustainability 2019, 11(22), 6433; https://doi.org/10.3390/su11226433 - 15 Nov 2019
Cited by 47 | Viewed by 7897
Abstract
A techno-economic assessment of two circular economy scenarios related to fluidized bed gasification-based systems for combined heat and power (CHP) generation, fueled with rice processing wastes, was conducted. In the first scenario, a gasification unit with 42,700 t/y rice husks capacity provided a [...] Read more.
A techno-economic assessment of two circular economy scenarios related to fluidized bed gasification-based systems for combined heat and power (CHP) generation, fueled with rice processing wastes, was conducted. In the first scenario, a gasification unit with 42,700 t/y rice husks capacity provided a waste management industrial symbiosis solution for five small rice-processing companies (SMEs), located at the same area. In the second scenario, a unit of 18,300 t/y rice husks capacity provided a waste management solution to only one rice processing company at the place of waste generation, as a custom-made solution. The first scenario of a cooperative industrial symbiosis approach is the most economically viable, with an annual revenue of 168 €/(t×y) of treated rice husks, a very good payout time (POT = 1.05), and return in investment (ROI = 0.72). The techno-economic assessment was based on experiments performed at a laboratory-scale gasification rig, and on technological configurations of the SMARt-CHP system, a decentralized bioenergy generation system developed at Aristotle University, Greece. The experimental proof of concept of rice husks gasification was studied at a temperature range of 700 to 900 °C, under an under-stoichiometric ratio of O2/N2 (10/90 v/v) as the gasification agent. Producer gas’s Lower Heating Value (LHV) maximized at 800 °C (10.9 MJ/Nm3), while the char’s Brunauer Emmet Teller (BET) surface reached a max of 146 m2/g at 900 °C. Recommendations were provided for a pretreatment of rice husks in order to minimize de-fluidization problems of the gasification system due to Si-rich ash. With the application of this model, simultaneous utilization and processing of waste flows from various rice value chain can be achieved towards improving environmental performance of the companies and producing energy and fertilizer by using waste as a fuel and resource with value. Full article
(This article belongs to the Special Issue Biofuels–Bioenergy Waste to Value Added Feedstock)
Show Figures

Graphical abstract

34 pages, 968 KB  
Review
A Critical Review of Mineral Matter Related Issues during Gasification of Coal in Fixed, Fluidized, and Entrained Flow Gasifiers
by Vijayaragavan Krishnamoorthy and Sarma V. Pisupati
Energies 2015, 8(9), 10430-10463; https://doi.org/10.3390/en80910430 - 22 Sep 2015
Cited by 94 | Viewed by 15795
Abstract
Gasification of coal is gaining more popularity due to its clean operation, and its ability to generate products for various markets. However, these technologies are not widely commercialized due to reliability and economic issues. Mineral matter in coal plays an important role in [...] Read more.
Gasification of coal is gaining more popularity due to its clean operation, and its ability to generate products for various markets. However, these technologies are not widely commercialized due to reliability and economic issues. Mineral matter in coal plays an important role in affecting the availability/reliability of a gasifier. Agglomeration in the bed, slag mobility and blockage of the syngas exit section are some of the operations related concerns in fixed-bed gasifiers, while ash deposition and sudden defluidization are the major concerns in fluidized bed gasifiers. In the case of entrained flow gasifiers, syngas cooler fouling and blockage, corrosion and erosion of refractory, and slag mobility are some of the major issues affecting the operations and the reliability of the gasifier. This review is aimed at critically examining various mineral matter related issues contributing to the operation and reliability problems in three types of generic gasifiers (fixed bed, fluidized bed and entrained flow gasifiers). Based on the review, some strategies to counter the potential mineral matter related issues are presented. Full article
(This article belongs to the Special Issue Recent Advances in Coal Combustion and Gasification)
Show Figures

Figure 1

26 pages, 1597 KB  
Article
Academic Aspects of Lunar Water Resources and Their Relevance to Lunar Protolife
by Jack Green
Int. J. Mol. Sci. 2011, 12(9), 6051-6076; https://doi.org/10.3390/ijms12096051 - 19 Sep 2011
Cited by 6 | Viewed by 12362
Abstract
Water ice has been discovered on the moon by radar backscatter at the North Pole and by spectrometry at the South Pole in the Cabeus crater with an extrapolated volume for both poles of conservatively 109 metric tons. Various exogenic and endogenic [...] Read more.
Water ice has been discovered on the moon by radar backscatter at the North Pole and by spectrometry at the South Pole in the Cabeus crater with an extrapolated volume for both poles of conservatively 109 metric tons. Various exogenic and endogenic sources of this water have been proposed. This paper focuses on endogenic water sources by fumaroles and hot springs in shadowed polar craters. A survey of theoretical and morphological details supports a volcanic model. Release of water and other constituents by defluidization over geological time was intensified in the Hadean Eon (c.a. 4600 to 4000 My). Intensification factors include higher heat flow by now-extinct radionuclides, tidal flexing and higher core temperatures. Lesser gravity would promote deeper bubble nucleation in lunar magmas, slower rise rates of gases and enhanced subsidence of lunar caldera floors. Hadean volcanism would likely have been more intense and regional in nature as opposed to suture-controlled location of calderas in Phanerozoic Benioff-style subduction environments. Seventy-seven morphological, remote sensing and return sample features were categorized into five categories ranging from a volcano-tectonic origin only to impact origin only. Scores for the most logical scenario were 69 to eight in favor of lunar volcanism. Ingredients in the Cabeus plume analysis showed many volcanic fluids and their derivatives plus a large amount of mercury. Mercury-rich fumaroles are well documented on Earth and are virtually absent in cometary gases and solids. There are no mercury anomalies in terrestrial impact craters. Volcanic fluids and their derivatives in lunar shadow can theoretically evolve into protolife. Energy for this evolution can be provided by vent flow charging intensified in the lunar Hadean and by charge separation on freezing fumarolic fluids in shadow. Fischer-Tropsch reactions on hydrothermal clays can yield lipids, polycyclic aromatic hydrocarbons and amino acids. Soluble polyphosphates are available in volcanic fluids as well as vital catalysts such as tungsten. We conclude that the high volume of polar water resources supports the likelihood of lunar volcanism and that lunar volcanism supports the likelihood of protolife. Full article
(This article belongs to the Special Issue Origin of Life 2011)
Show Figures

Back to TopTop