Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = dechorionation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2640 KB  
Article
The Developmental Toxicity of Haloperidol on Zebrafish (Danio rerio) Embryos
by Maximos Leonardos, Charis Georgalis, Georgia Sergiou, Dimitrios Leonardos, Lampros Lakkas and George A. Alexiou
Biomedicines 2025, 13(8), 1794; https://doi.org/10.3390/biomedicines13081794 - 22 Jul 2025
Cited by 1 | Viewed by 926
Abstract
Background/Objectives: Haloperidol is a typical antipsychotic drug widely used for acute confusional state, psychotic disorders, agitation, delirium, and aggressive behavior. Methods: The toxicity of haloperidol was studied using zebrafish (ZF) embryos as a model organism. Dechorionated embryos were exposed to various concentrations of [...] Read more.
Background/Objectives: Haloperidol is a typical antipsychotic drug widely used for acute confusional state, psychotic disorders, agitation, delirium, and aggressive behavior. Methods: The toxicity of haloperidol was studied using zebrafish (ZF) embryos as a model organism. Dechorionated embryos were exposed to various concentrations of haloperidol (0.5–6.0 mg/L). The lethal dose concentration was estimated and was found to be 1.941 mg/L. Results: The impact of haloperidol was dose-dependent and significant from 0.25 mg/L. Haloperidol induced several deformities at sublethal doses, including abnormal somites, yolk sac edema, and skeletal deformities. Haloperidol significantly affected heart rate and blood flow and induced pericardial edema and hyperemia in a dose-dependent manner, suggesting its influence on heart development and function. Embryos exposed to haloperidol during their ontogenetic development had smaller body length and eye surface area than non-exposed ones in a dose-dependent manner. Conclusions: It was found that haloperidol significantly affects the behavior of the experimental organisms in terms of mobility, reflexes to stimuli, and adaptation to dark/light conditions. Full article
(This article belongs to the Section Neurobiology and Clinical Neuroscience)
Show Figures

Figure 1

14 pages, 6712 KB  
Article
Nanoplastic-Induced Developmental Toxicity in Ascidians: Comparative Analysis of Chorionated and Dechorionated Phallusia mammillata Embryos
by Maria Concetta Eliso, Ilaria Corsi, Antonietta Spagnuolo and Rémi Dumollard
J. Xenobiot. 2025, 15(1), 10; https://doi.org/10.3390/jox15010010 - 10 Jan 2025
Cited by 3 | Viewed by 1379
Abstract
Nanoplastics pose a growing threat to marine ecosystems, particularly affecting the early developmental stages of marine organisms. This study investigates the effects of amino-modified polystyrene nanoparticles (PS-NH2, 50 nm) on the embryonic development of Phallusia mammillata, a model ascidian species. [...] Read more.
Nanoplastics pose a growing threat to marine ecosystems, particularly affecting the early developmental stages of marine organisms. This study investigates the effects of amino-modified polystyrene nanoparticles (PS-NH2, 50 nm) on the embryonic development of Phallusia mammillata, a model ascidian species. Both chorionated and dechorionated embryos were exposed to increasing concentrations of PS-NH2 so morphological alterations could be assessed with a high-content analysis of the phenotypes and genotoxicity. PS-NH2 induced the same morphological alterations in both chorionated and dechorionated embryos, with dechorionated embryos being more sensitive (EC50 = 3.0 μg mL−1) than chorionated ones (EC50 = 6.26 μg mL−1). Interestingly, results from the morphological analysis showed two concentration-dependent mechanisms of action: (i) at concentrations near the EC50, neurodevelopmental abnormalities resembling the ones induced by exposure to known endocrine disruptors (EDs) were observed, and (ii) at higher concentrations (15 μg mL−1 and 7.5 μg mL−1 for chorionated and dechorionated embryos, respectively), a nonspecific toxicity was evident, likely due to general oxidative stress. The phenotypes resulting from the PS-NH2 treatment were not related to DNA damage, as revealed by a genotoxicity assay performed on neurula embryos. Our data suggest that PS-NH2-induced toxicity is primarily mediated through oxidative stress, probably triggered by interactions between the positive charges of the PS NPs and the negative charges on the cell membranes. The lack of a protective chorion further exacerbated these effects, highlighting its role in mitigating/protecting against NP-induced damage. Full article
(This article belongs to the Special Issue Feature Papers in Ecotoxicology)
Show Figures

Figure 1

19 pages, 18685 KB  
Article
An Effective Chemical Permeabilization of Silkworm Embryos
by David Urbán-Duarte, Shuichiro Tomita, Hiroki Sakai, Hideki Sezutsu, José Fernando De La Torre-Sánchez, Yooichi Kainoh, Seiichi Furukawa and Keiro Uchino
Bioengineering 2023, 10(5), 563; https://doi.org/10.3390/bioengineering10050563 - 8 May 2023
Cited by 1 | Viewed by 2350
Abstract
The lipid layer surrounding the vitelline membrane of insect eggs has a critical role in the waterproofing and desiccation resistance of embryos. However, this lipid layer also prevents the flux of chemicals into the embryos, such as cryoprotectants, which are required for successful [...] Read more.
The lipid layer surrounding the vitelline membrane of insect eggs has a critical role in the waterproofing and desiccation resistance of embryos. However, this lipid layer also prevents the flux of chemicals into the embryos, such as cryoprotectants, which are required for successful cryopreservation. The permeabilization studies of silkworm embryos remain insufficient. Therefore, in this study, we developed a permeabilization method to remove the lipid layer in the silkworm, Bombyx mori, and examined factors affecting the viability of dechorionated embryos, including the types and exposure times of chemicals and embryonic stages. Among the chemicals used, hexane and heptane were effective for permeabilization, whereas Triton X-100 and Tween-80 were less effective. Regarding the embryonic stages, there were significant differences between 160 and 166 h after egg laying (AEL) at 25 °C. Consequently, we found that the treatment of 160 AEL embryos with hexane for 30 s was the best condition for the permeability and viability of embryos, in which over 62% of the permeabilized embryos grew up to the second larval instar and their moths could lay fertilized eggs. Our method can be used for various purposes, including permeability investigations using other chemicals and embryonic cryopreservation. Full article
(This article belongs to the Section Biochemical Engineering)
Show Figures

Figure 1

12 pages, 2538 KB  
Communication
Comparison of Pronase versus Manual Dechorionation of Zebrafish Embryos for Small Molecule Treatments
by Eva H. Hasegawa, Gist H. Farr and Lisa Maves
J. Dev. Biol. 2023, 11(2), 16; https://doi.org/10.3390/jdb11020016 - 28 Mar 2023
Cited by 8 | Viewed by 6268
Abstract
Zebrafish are a powerful animal model for small molecule screening. Small molecule treatments of zebrafish embryos usually require that the chorion, an acellular envelope enclosing the embryo, is removed in order for chemical compounds to access the embryo from the bath medium. For [...] Read more.
Zebrafish are a powerful animal model for small molecule screening. Small molecule treatments of zebrafish embryos usually require that the chorion, an acellular envelope enclosing the embryo, is removed in order for chemical compounds to access the embryo from the bath medium. For large-scale studies requiring hundreds of embryos, manual dechorionation, using forceps, can be a time-consuming and limiting process. Pronase is a non-specific protease that is widely used as an enzymatic alternative for dechorionating zebrafish embryos. However, whether pronase treatments alter the effects of subsequent small molecule treatments has not been addressed. Here, we provide a detailed protocol for large-scale pronase dechorionation of zebrafish embryos. We tested whether pronase treatment can influence the efficacy of drug treatments in zebrafish embryos. We used a zebrafish model for Duchenne muscular dystrophy (DMD) to investigate whether the efficacies of trichostatin-A (TSA) or salermide + oxamflatin, small molecule inhibitors known to ameliorate the zebrafish dmd muscle degeneration phenotype, are significantly altered when embryos are treated with pronase versus manual dechorionation. We also tested the effects of pronase on the ability of the anthracycline cancer drug doxorubicin to induce cardiotoxicity in zebrafish embryos. When comparing pronase- versus forceps-dechorionated embryos used in these small molecule treatments, we found no appreciable effects of pronase on animal survival or on the effects of the small molecules. The significant difference that was detected was a small improvement in the ability of salermide + oxamflatin to ameliorate the dmd phenotype in pronase-treated embryos when compared with manual dechorionation. Our study supports the use of pronase treatment as a dechorionation method for zebrafish drug screening experiments. Full article
(This article belongs to the Special Issue Zebrafish—a Model System for Developmental Biology II)
Show Figures

Figure 1

18 pages, 3621 KB  
Article
β-Glucans as Dietary Supplement to Improve Locomotion and Mitochondrial Respiration in a Model of Duchenne Muscular Dystrophy
by Letizia Brogi, Maria Marchese, Alessandro Cellerino, Rosario Licitra, Valentina Naef, Serena Mero, Carlo Bibbiani and Baldassare Fronte
Nutrients 2021, 13(5), 1619; https://doi.org/10.3390/nu13051619 - 12 May 2021
Cited by 19 | Viewed by 4771
Abstract
Duchenne muscular dystrophy (DMD) is a severe X-linked neuromuscular childhood disorder that causes progressive muscle weakness and degeneration. A lack of dystrophin in DMD leads to inflammatory response, autophagic dysregulation, and oxidative stress in skeletal muscle fibers that play a key role in [...] Read more.
Duchenne muscular dystrophy (DMD) is a severe X-linked neuromuscular childhood disorder that causes progressive muscle weakness and degeneration. A lack of dystrophin in DMD leads to inflammatory response, autophagic dysregulation, and oxidative stress in skeletal muscle fibers that play a key role in the progression of the pathology. β-glucans can modulate immune function by modifying the phagocytic activity of immunocompetent cells, notably macrophages. Mitochondrial function is also involved in an important mechanism of the innate and adaptive immune responses, owing to high need for energy of immune cells. In the present study, the effects of 1,3-1,6 β-glucans on five-day-old non-dystrophic and dystrophic (sapje) zebrafish larvae were investigated. The effects of the sonication of β-glucans and the dechorionation of embryos were also evaluated. The results showed that the incidence of dystrophic phenotypes was reduced when dystrophic embryos were exposed to 2 and 4 mg L−1 of 1,3-1,6 β-glucans. Moreover, when the dystrophic larvae underwent 8 mg L−1 treatment, an improvement of the locomotor performances and mitochondrial respiration were observed. In conclusion, the observed results demonstrated that 1,3-1,6 β-glucans improve locomotor performances and mitochondrial function in dystrophic zebrafish. Therefore, for ameliorating their life quality, 1,3-1,6 β-glucans look like a promising diet supplement for DMD patients, even though further investigations are required. Full article
(This article belongs to the Special Issue Nutrition, Immunity, and Neurological Diseases)
Show Figures

Figure 1

15 pages, 1425 KB  
Article
Predictive Capability of QSAR Models Based on the CompTox Zebrafish Embryo Assays: An Imbalanced Classification Problem
by Mario Lovrić, Olga Malev, Göran Klobučar, Roman Kern, Jay J. Liu and Bono Lučić
Molecules 2021, 26(6), 1617; https://doi.org/10.3390/molecules26061617 - 15 Mar 2021
Cited by 15 | Viewed by 4645
Abstract
The CompTox Chemistry Dashboard (ToxCast) contains one of the largest public databases on Zebrafish (Danio rerio) developmental toxicity. The data consists of 19 toxicological endpoints on unique 1018 compounds measured in relatively low concentration ranges. The endpoints are related to developmental [...] Read more.
The CompTox Chemistry Dashboard (ToxCast) contains one of the largest public databases on Zebrafish (Danio rerio) developmental toxicity. The data consists of 19 toxicological endpoints on unique 1018 compounds measured in relatively low concentration ranges. The endpoints are related to developmental effects occurring in dechorionated zebrafish embryos for 120 hours post fertilization and monitored via gross malformations and mortality. We report the predictive capability of 209 quantitative structure–activity relationship (QSAR) models developed by machine learning methods using penalization techniques and diverse model quality metrics to cope with the imbalanced endpoints. All these QSAR models were generated to test how the imbalanced classification (toxic or non-toxic) endpoints could be predicted regardless which of three algorithms is used: logistic regression, multi-layer perceptron, or random forests. Additionally, QSAR toxicity models are developed starting from sets of classical molecular descriptors, structural fingerprints and their combinations. Only 8 out of 209 models passed the 0.20 Matthew’s correlation coefficient value defined a priori as a threshold for acceptable model quality on the test sets. The best models were obtained for endpoints mortality (MORT), ActivityScore and JAW (deformation). The low predictability of the QSAR model developed from the zebrafish embryotoxicity data in the database is mainly due to a higher sensitivity of 19 measurements of endpoints carried out on dechorionated embryos at low concentrations. Full article
(This article belongs to the Special Issue QSAR and QSPR: Recent Developments and Applications, 2nd Edition)
Show Figures

Figure 1

26 pages, 4980 KB  
Article
Radioprotective Effects of Kelulut Honey in Zebrafish Model
by Mohd Noor Hidayat Adenan, Latifah Saiful Yazan, Annie Christianus, Nur Fariesha Md Hashim, Suzita Mohd Noor, Shuhaimi Shamsudin, Farah Jehan Ahmad Bahri and Khairuddin Abdul Rahim
Molecules 2021, 26(6), 1557; https://doi.org/10.3390/molecules26061557 - 12 Mar 2021
Cited by 10 | Viewed by 3825
Abstract
Large doses of ionizing radiation can damage human tissues. Therefore, there is a need to investigate the radiation effects as well as identify effective and non-toxic radioprotectors. This study evaluated the radioprotective effects of Kelulut honey (KH) from stingless bee (Trigona sp.) [...] Read more.
Large doses of ionizing radiation can damage human tissues. Therefore, there is a need to investigate the radiation effects as well as identify effective and non-toxic radioprotectors. This study evaluated the radioprotective effects of Kelulut honey (KH) from stingless bee (Trigona sp.) on zebrafish (Danio rerio) embryos. Viable zebrafish embryos at 24 hpf were dechorionated and divided into four groups, namely untreated and non-irradiated, untreated and irradiated, KH pre-treatment and amifostine pre-treatment. The embryos were first treated with KH (8 mg/mL) or amifostine (4 mM) before irradiation at doses of 11 Gy to 20 Gy using gamma ray source, caesium-137 (137Cs). Lethality and abnormality analysis were performed on all of the embryos in the study. Immunohistochemistry assay was also performed using selected proteins, namely γ-H2AX and caspase-3, to investigate DNA damages and incidences of apoptosis. KH was found to reduce coagulation effects at up to 20 Gy in the lethality analysis. The embryos developed combinations of abnormality, namely microphthalmia (M), body curvature and microphthalmia (BM), body curvature with microphthalmia and microcephaly (BMC), microphthalmia and pericardial oedema (MO), pericardial oedema (O), microphthalmia with microcephaly and pericardial oedema (MCO) and all of the abnormalities (AA). There were more abnormalities developed from 24 to 72 h (h) post-irradiation in all groups. At 96 h post-irradiation, KH was identified to reduce body curvature effect in the irradiated embryos (up to 16 Gy). γ-H2AX and caspase-3 intensities in the embryos pre-treated with KH were also found to be lower than the untreated group at gamma irradiation doses of 11 Gy to 20 Gy and 11 Gy to 19 Gy, respectively. KH was proven to increase the survival rate of zebrafish embryos and exhibited protection against organ-specific abnormality. KH was also found to possess cellular protective mechanism by reducing DNA damage and apoptosis proteins expression. Full article
Show Figures

Graphical abstract

15 pages, 1889 KB  
Article
Systematic Assessment of Exposure Variations on Observed Bioactivity in Zebrafish Chemical Screening
by Lindsay B. Wilson, Lisa Truong, Michael T. Simonich and Robyn L. Tanguay
Toxics 2020, 8(4), 87; https://doi.org/10.3390/toxics8040087 - 14 Oct 2020
Cited by 15 | Viewed by 3565
Abstract
The embryonic zebrafish is a powerful tool for high-throughput screening of chemicals. While this model has significant potential for use in safety assessments and chemical prioritization, a lack of exposure protocol harmonized across laboratories has limited full model adoption. To assess the potential [...] Read more.
The embryonic zebrafish is a powerful tool for high-throughput screening of chemicals. While this model has significant potential for use in safety assessments and chemical prioritization, a lack of exposure protocol harmonized across laboratories has limited full model adoption. To assess the potential that exposure protocols alter chemical bioactivity, we screened a set of eight chemicals and one 2D nanomaterial across four different regimens: (1) the current Tanguay laboratory’s standard protocol of dechorionated embryos and static exposure in darkness; (2) exposure with chorion intact; (3) exposure under a 14 h light: 10 h dark cycle; and (4) exposure with daily chemical renewal. The latter three regimens altered the concentrations, resulting in bioactivity of the test agents compared to that observed with the Tanguay laboratory’s standard regimen, though not directionally the same for each chemical. The results of this study indicate that with the exception for the 2D nanomaterial, the screening design did not change the conclusion regarding chemical bioactivity, just the nominal concentrations producing the observed activity. Since the goal of tier one chemical screening often is to differentiate active from non-active chemicals, researchers could consider the trade-offs regarding cost, labor, and sensitivity in their study design without altering hit rates. Taken further, these results suggest that it is reasonably feasible to reach agreement on a standardized exposure regiment, which will promote data sharing without sacrificing data content. Full article
(This article belongs to the Special Issue Advanced Zebrafish Model for Environmental Health Sciences Research)
Show Figures

Figure 1

12 pages, 2763 KB  
Article
Toxicological Evaluation of SiO2 Nanoparticles by Zebrafish Embryo Toxicity Test
by Sandra Vranic, Yasuhito Shimada, Sahoko Ichihara, Masayuki Kimata, Wenting Wu, Toshio Tanaka, Sonja Boland, Lang Tran and Gaku Ichihara
Int. J. Mol. Sci. 2019, 20(4), 882; https://doi.org/10.3390/ijms20040882 - 18 Feb 2019
Cited by 65 | Viewed by 9412
Abstract
As the use of nanoparticles (NPs) is increasing, the potential toxicity and behavior of NPs in living systems need to be better understood. Our goal was to evaluate the developmental toxicity and bio-distribution of two different sizes of fluorescently-labeled SiO2 NPs, 25 [...] Read more.
As the use of nanoparticles (NPs) is increasing, the potential toxicity and behavior of NPs in living systems need to be better understood. Our goal was to evaluate the developmental toxicity and bio-distribution of two different sizes of fluorescently-labeled SiO2 NPs, 25 and 115 nm, with neutral surface charge or with different surface functionalization, rendering them positively or negatively charged, in order to predict the effect of NPs in humans. We performed a zebrafish embryo toxicity test (ZFET) by exposing the embryos to SiO2 NPs starting from six hours post fertilization (hpf). Survival rate, hatching time, and gross morphological changes were assessed at 12, 24, 36, 48, 60, and 72 hpf. We evaluated the effect of NPs on angiogenesis by counting the number of sub-intestinal vessels between the second and seventh intersegmental vessels and gene expression analysis of vascular endothelial growth factor (VEGF) and VEGF receptors at 72 hpf. SiO2 NPs did not show any adverse effects on survival rate, hatching time, gross morphology, or physiological angiogenesis. We found that SiO2 NPs were trapped by the chorion up until to the hatching stage. After chemical removal of the chorion (dechorionation), positively surface-charged SiO2 NPs (25 nm) significantly reduced the survival rate of the fish compared to the control group. These results indicate that zebrafish chorion acts as a physical barrier against SiO2 NPs, and removing the chorions in ZFET might be necessary for evaluation of toxicity of NPs. Full article
(This article belongs to the Special Issue Bioactive Nanoparticles)
Show Figures

Graphical abstract

8 pages, 4159 KB  
Article
Evaluation of Tanshinone IIA Developmental Toxicity in Zebrafish Embryos
by Tao Wang, Chengxi Wang, Qiong Wu, Kangdi Zheng, Jiaojiao Chen, Yutao Lan, Yao Qin, Wenjie Mei and Baoguo Wang
Molecules 2017, 22(4), 660; https://doi.org/10.3390/molecules22040660 - 21 Apr 2017
Cited by 53 | Viewed by 7312
Abstract
Tanshinone IIA (Tan-IIA) is derived from the dried roots of Salvia miltiorrhiza Bunge, a traditional Chinese medicine. Although Salvia miltiorrhiza has been applied for many years, the toxicity of the mono-constituent of Salvia miltiorrhiza, tanshinone IIA, is still understudied. This study evaluated [...] Read more.
Tanshinone IIA (Tan-IIA) is derived from the dried roots of Salvia miltiorrhiza Bunge, a traditional Chinese medicine. Although Salvia miltiorrhiza has been applied for many years, the toxicity of the mono-constituent of Salvia miltiorrhiza, tanshinone IIA, is still understudied. This study evaluated the cardiotoxicity and developmental malformations of Tan-IIA by using zebrafish normal embryos and dechorionated embryos. After treatment with Tan-IIA in different concentrations for four-day periods, obvious pericardial edema, spinal curvature, and even missing tails were observed in zebrafish embryos. The LC50 values in the dechorionated embryo group at 72 h post-fertilization (hpf) and 96 hpf were 18.5 μM and 12.8 μM, respectively, and the teratogenicity was manifested at a concentration of about 1 µM. The main endpoints of teratogenicity were scoliosis, malformation of tail, and pericardium edema. Our findings displayed the potential cardiotoxicity and severe impact on the abnormal development of Tan-IIA in zebrafish embryo at high concentrations, which may help avoid the risk of its clinical application. Full article
(This article belongs to the Special Issue ECSOC-20)
Show Figures

Figure 1

Back to TopTop