Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = decay and mould resistance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3658 KiB  
Article
The Effect of Particles from Rotten Spruce Logs and Recycled Wooden Composites on Changes in the Bio-Resistance of Three-Layer Particleboards Against the Decaying Fungus Coniophora puteana and Mixture of Moulds
by Zuzana Vidholdová, Viktória Satinová and Ladislav Reinprecht
Forests 2024, 15(11), 2043; https://doi.org/10.3390/f15112043 - 19 Nov 2024
Viewed by 938
Abstract
Wood-based particleboards (PBs) are widely used in construction and interior applications, yet their durability, particularly against biological degradation, remains a challenge. Recycling wood and incorporating degraded particles from rotted wood can potentially enhance PB sustainability and align with circular bioeconomy principles. This study [...] Read more.
Wood-based particleboards (PBs) are widely used in construction and interior applications, yet their durability, particularly against biological degradation, remains a challenge. Recycling wood and incorporating degraded particles from rotted wood can potentially enhance PB sustainability and align with circular bioeconomy principles. This study investigates the biological resistance of the three-layer, laboratory-prepared PBs with varied amounts of particles, from sound spruce wood to particles, and from spruce logs attacked by brown- or white rot, respectively, to particles from recycled wooden composites of laminated particleboards (LPBs) or blockboards (BBs), i.e., 100:0, 80:20, 50:50, and 0:100. The bio-resistance of PBs was evaluated against the brown-rot fungus Coniophora puteana, as well as against a mixture of moulds’ “microscopic fungi”, such as Aspergillus versicolor BAM 8, Aspergillus niger BAM 122, Penicillium purpurogenum BAM 24, Stachybotrys chartarum BAM 32, and Rhodotorula mucilaginosa BAM 571. PBs containing particles from brown-rotten wood or from recycled wood composites, particularly LPBs, had a partly enhanced decay resistance, but their mass loss was nevertheless more than 30%. On the other hand, the mould resistance of all variants of PBs, evaluated in the 21st day, was very poor, with the highest mould growth activity (MGA = 4). These findings suggested that some types of rotten and recycled wood particles can improve the biological resistance of PBs; however, their effectiveness is influenced by the type of wood degradation and the source of recycled materials. Further, the results highlight the need for improved biocidal, chemical, or thermal modifications of wood particles to enhance the overall biological durability of PBs for specific uses. Full article
Show Figures

Figure 1

16 pages, 2131 KiB  
Article
Deciphering Molecular Determinants Underlying Penicillium digitatum’s Response to Biological and Chemical Antifungal Agents by Tandem Mass Tag (TMT)-Based High-Resolution LC-MS/MS
by Lucía Citores, Mariangela Valletta, Vikram Pratap Singh, Paolo Vincenzo Pedone, Rosario Iglesias, José Miguel Ferreras, Angela Chambery and Rosita Russo
Int. J. Mol. Sci. 2022, 23(2), 680; https://doi.org/10.3390/ijms23020680 - 8 Jan 2022
Cited by 10 | Viewed by 2862
Abstract
Penicillium digitatum is a widespread pathogen responsible for the postharvest decay of citrus, one of the most economically important crops worldwide. Currently, chemical fungicides are still the main strategy to control the green mould disease caused by the fungus. However, the increasing selection [...] Read more.
Penicillium digitatum is a widespread pathogen responsible for the postharvest decay of citrus, one of the most economically important crops worldwide. Currently, chemical fungicides are still the main strategy to control the green mould disease caused by the fungus. However, the increasing selection and proliferation of fungicide-resistant strains require more efforts to explore new alternatives acting via new or unexplored mechanisms for postharvest disease management. To date, several non-chemical compounds have been investigated for the control of fungal pathogens. In this scenario, understanding the molecular determinants underlying P. digitatum’s response to biological and chemical antifungals may help in the development of safer and more effective non-chemical control methods. In this work, a proteomic approach based on isobaric labelling and a nanoLC tandem mass spectrometry approach was used to investigate molecular changes associated with P. digitatum’s response to treatments with α-sarcin and beetin 27 (BE27), two proteins endowed with antifungal activity. The outcomes of treatments with these biological agents were then compared with those triggered by the commonly used chemical fungicide thiabendazole (TBZ). Our results showed that differentially expressed proteins mainly include cell wall-degrading enzymes, proteins involved in stress response, antioxidant and detoxification mechanisms and metabolic processes such as thiamine biosynthesis. Interestingly, specific modulations in response to protein toxins treatments were observed for a subset of proteins. Deciphering the inhibitory mechanisms of biofungicides and chemical compounds, together with understanding their effects on the fungal physiology, will provide a new direction for improving the efficacy of novel antifungal formulations and developing new control strategies. Full article
(This article belongs to the Special Issue 25th Anniversary of IJMS: Advances in Biochemistry)
Show Figures

Figure 1

12 pages, 3255 KiB  
Article
Particleboards from Recycled Pallets
by Ján Iždinský, Ladislav Reinprecht and Zuzana Vidholdová
Forests 2021, 12(11), 1597; https://doi.org/10.3390/f12111597 - 19 Nov 2021
Cited by 19 | Viewed by 3291
Abstract
Worldwide production of wooden pallets continually increases, and therefore in future higher number of damaged pallets need to be recycled. One way to conveniently recycle pallets is their use for the production of particleboards (PBs). The 3-layer PBs, bonded with urea-formaldehyde (UF) resin, [...] Read more.
Worldwide production of wooden pallets continually increases, and therefore in future higher number of damaged pallets need to be recycled. One way to conveniently recycle pallets is their use for the production of particleboards (PBs). The 3-layer PBs, bonded with urea-formaldehyde (UF) resin, were prepared in laboratory conditions using particles from fresh spruce logs (FSL) and recycled spruce pallets (RSP) in mutual weight ratios of 100:0, 80:20, 50:50 and 0:100. Particles from RSP did not affect the moisture properties of PBs, i.e., the thickness swelling (TS) and water absorption (WA). The mechanical properties of PBs based on particles from RSP significantly worsened: the modulus of rupture (MOR) in bending from 14.6 MPa up to 10 MPa, the modulus of elasticity (MOE) in bending from 2616 MPa up to 2012 MPa, and the internal bond (IB) from 0.79 MPa up to 0.61 MPa. Particles from RSP had only a slight negative effect on the decay resistance of PBs to the brown-rot fungus Serpula lacrymans, while their presence in surfaces of PBs did not affect the growth activity of moulds at all. Full article
Show Figures

Figure 1

15 pages, 5379 KiB  
Article
Particleboards from Recycled Thermally Modified Wood
by Ján Iždinský, Zuzana Vidholdová and Ladislav Reinprecht
Forests 2021, 12(11), 1462; https://doi.org/10.3390/f12111462 - 27 Oct 2021
Cited by 8 | Viewed by 2378
Abstract
In recent years, the production and consumption of thermally modified wood (TMW) has been increasing. Offcuts and other waste generated during TMWs processing into products, as well as already disposed products based on TMWs can be an input recycled raw material for production [...] Read more.
In recent years, the production and consumption of thermally modified wood (TMW) has been increasing. Offcuts and other waste generated during TMWs processing into products, as well as already disposed products based on TMWs can be an input recycled raw material for production of particleboards (PBs). In a laboratory, 16 mm thick 3-layer PBs bonded with urea-formaldehyde (UF) resin were produced at 5.8 MPa, 240 °C and 8 s pressing factor. In PBs, the particles from fresh spruce wood and mixed particles from offcuts of pine, beech, and ash TMWs were combined in weight ratios of 100:0, 80:20, 50:50 and 0:100. Thickness swelling (TS) and water absorption (WA) of PBs decreased with increased portion of TMW particles, i.e., TS after 24 h maximally about 72.3% and WA after 24 h maximally about 64%. However, mechanical properties of PBs worsened proportionally with a higher content of recycled TMW—apparently, the modulus of rupture (MOR) up to 55.5% and internal bond (IB) up to 46.2%, while negative effect of TMW particles on the modulus of elasticity (MOE) was milder. Decay resistance of PBs to the brown-rot fungus Serpula lacrymans (Schumacher ex Fries) S.F. Gray increased if they contained TMW particles, maximally about 45%, while the mould resistance of PBs containing TMW particles improved only in the first days of test. In summary, the recycled TMW particles can improve the decay and water resistance of PBs exposed to higher humidity environment. However, worsening of their mechanical properties could appear, as well. Full article
Show Figures

Figure 1

15 pages, 10356 KiB  
Article
Resistance of Wood Treated with Iron Compounds against Wood-Destroying Decay and Mould Fungi
by Marius Aleinikovas, Iveta Varnagirytė-Kabašinskienė, Aistė Povilaitienė, Benas Šilinskas, Mindaugas Škėma and Lina Beniušienė
Forests 2021, 12(5), 645; https://doi.org/10.3390/f12050645 - 19 May 2021
Cited by 13 | Viewed by 4055
Abstract
Treatment of wood with various physical and chemical factors can change the number of wood parameters, which can also lead to changes in resistance to wood-destroying fungi. This study evaluates the effects of hydrothermal treatments (additives Fe2O3 or FeCl3 [...] Read more.
Treatment of wood with various physical and chemical factors can change the number of wood parameters, which can also lead to changes in resistance to wood-destroying fungi. This study evaluates the effects of hydrothermal treatments (additives Fe2O3 or FeCl3 with and without commercial tannins, also without additives and fresh wood) on decay and mould fungi resistance of modified wood of Scots pine (Pinus sylvestris), Norway spruce (Picea abies), Douglas fir (Pseudotsuga menziesii), walnut (Juglans regia), and Norway maple (Acer platanoides). For wood samples, the resistance against wood decay fungi Trametes versicolor (white rot) and Coniophora puteana (brown rot) and the resistance against mould fungi Aspergillus niger and Penicillium sp. were assessed. The study findings showed that wood modified with iron compounds could cause a higher resistance to wood-destroying fungi. The weight losses of the modified and control wood, caused by T. versicolor and C. puteana, differed for coniferous and deciduous: the average weight loss of treated pine, spruce, and fir wood caused by C. puteana was higher than that caused by T. versicolor, while these differences on maple and walnut wood were not significant. The wood hydrothermal treatment with Fe2Cl3 with and without tannins significantly reduced the weight loss caused by T. versicolor and C. puteana, and the treatment with Fe2O3 slightly improved the decay resistance. For the wood, hydrothermally modified with FeCl3 and FeCl3 + tannins, the mould area for both tested Aspergillus niger and Penicillium sp. was smallest for the wood of all tested tree species compared to other treatments. A different response was obtained for coniferous and deciduous tree species wood. The spruce wood, followed by fir wood, treated with FeCl3 with and without tannins, was the most resistant against the mould fungi. Relatively low resistance against the mould fungi was fixed for the maple wood treated by various iron compounds, except the treatment with Fe2O3 + tannins, which gave a very positive response against the Penicillium sp. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

Back to TopTop