Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = deazaflavin-dependent nitroreductase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4660 KB  
Article
You Win Some, You Lose Some: Modifying the Molecular Periphery of Nitrofuran-Tagged Diazaspirooctane Reshapes Its Antibacterial Activity Profile
by Lyubov Vinogradova, Kristina Komarova, Alexey Lukin, Maxim Zhuravlev, Dmitry Deniskin, Anastasia Poliakova, Mikhail Chudinov, Maxim Gureev, Marine Dogonadze, Tatiana Vinogradova, Elizaveta Rogacheva, Lyudmila Kraeva, Yuri Porozov and Viktor Korzhikov-Vlakh
Int. J. Mol. Sci. 2025, 26(1), 207; https://doi.org/10.3390/ijms26010207 - 29 Dec 2024
Cited by 1 | Viewed by 1915
Abstract
The use of the concept of privileged structures significantly accelerates the search for new leads and their optimization. 6-(methylsulfonyl)-8-(4-methyl-4H-1,2,4-triazol-3-yl)-2-(5-nitro-2-furoyl)-2,6-diazaspiro[3.4]octane 1 has been identified as a lead, with MICs of 0.0124–0.0441 μg/mL against MTb multiresistant strains. Several series of structural analogues have [...] Read more.
The use of the concept of privileged structures significantly accelerates the search for new leads and their optimization. 6-(methylsulfonyl)-8-(4-methyl-4H-1,2,4-triazol-3-yl)-2-(5-nitro-2-furoyl)-2,6-diazaspiro[3.4]octane 1 has been identified as a lead, with MICs of 0.0124–0.0441 μg/mL against MTb multiresistant strains. Several series of structural analogues have been synthesized, including variations in the periphery and simplifications of their scaffolds. All synthesized compounds were tested against the MTb H37Rv strain and ESKAPE panel of pathogens using serial broth dilutions. However, an attempt to optimize structure of 1 did not lead to the development of more active compounds which can work against MTb, but to substances with high activity against S. aureus. Induced-fit docking and MM-GBSA calculations determined a change in the likely biotarget from deazaflavin-dependent nitroreductase to azoreductases. The privileged nature of the scaffold was demonstrated by the detection of a different type of activity. Full article
Show Figures

Figure 1

14 pages, 2187 KB  
Article
The Nitrofuran-Warhead-Equipped Spirocyclic Azetidines Show Excellent Activity against Mycobacterium tuberculosis
by Kristina Komarova, Lyubov Vinogradova, Alexey Lukin, Maxim Zhuravlev, Dmitry Deniskin, Mikhail Chudinov, Maxim Gureev, Marine Dogonadze, Natalia Zabolotnykh, Tatiana Vinogradova, Anastasia Lavrova and Petr Yablonskiy
Molecules 2024, 29(13), 3071; https://doi.org/10.3390/molecules29133071 - 27 Jun 2024
Cited by 3 | Viewed by 2900
Abstract
A series of 21 new 7′H-spiro[azetidine-3,5′-furo [3,4-d]pyrimidine]s substituted at the pyrimidine ring second position were synthesized. The compounds showed high antibacterial in vitro activity against M. tuberculosis. Two compounds had lower minimum inhibitory concentrations against Mtb (H37Rv strain) compared with isoniazid. The [...] Read more.
A series of 21 new 7′H-spiro[azetidine-3,5′-furo [3,4-d]pyrimidine]s substituted at the pyrimidine ring second position were synthesized. The compounds showed high antibacterial in vitro activity against M. tuberculosis. Two compounds had lower minimum inhibitory concentrations against Mtb (H37Rv strain) compared with isoniazid. The novel spirocyclic scaffold shows excellent properties for anti-tuberculosis drug development. Full article
(This article belongs to the Special Issue Advances in Antibacterial Molecules)
Show Figures

Graphical abstract

17 pages, 4576 KB  
Article
The Catalysis Mechanism of E. coli Nitroreductase A, a Candidate for Gene-Directed Prodrug Therapy: Potentiometric and Substrate Specificity Studies
by Benjaminas Valiauga, Gintautas Bagdžiūnas, Abigail V. Sharrock, David F. Ackerley and Narimantas Čėnas
Int. J. Mol. Sci. 2024, 25(8), 4413; https://doi.org/10.3390/ijms25084413 - 17 Apr 2024
Cited by 3 | Viewed by 2338
Abstract
E. coli nitroreductase A (NfsA) is a candidate for gene-directed prodrug cancer therapy using bioreductively activated nitroaromatic compounds (ArNO2). In this work, we determined the standard redox potential of FMN of NfsA to be −215 ± 5 mV at pH 7.0. [...] Read more.
E. coli nitroreductase A (NfsA) is a candidate for gene-directed prodrug cancer therapy using bioreductively activated nitroaromatic compounds (ArNO2). In this work, we determined the standard redox potential of FMN of NfsA to be −215 ± 5 mV at pH 7.0. FMN semiquinone was not formed during 5-deazaflavin-sensitized NfsA photoreduction. This determines the two-electron character of the reduction of ArNO2 and quinones (Q). In parallel, we characterized the oxidant specificity of NfsA with an emphasis on its structure. Except for negative outliers nitracrine and SN-36506, the reactivity of ArNO2 increases with their electron affinity (single-electron reduction potential, E17) and is unaffected by their lipophilicity and Van der Waals volume up to 386 Å. The reactivity of quinoidal oxidants is not clearly dependent on E17, but 2-hydroxy-1,4-naphthoquinones were identified as positive outliers and a number of compounds with diverse structures as negative outliers. 2-Hydroxy-1,4-naphthoquinones are characterized by the most positive reaction activation entropy and the negative outlier tetramethyl-1,4-benzoquinone by the most negative. Computer modelling data showed that the formation of H bonds with Arg15, Arg133, and Ser40, plays a major role in the binding of oxidants to reduced NfsA, while the role of the π–π interaction of their aromatic structures is less significant. Typically, the calculated hydride-transfer distances during ArNO2 reduction are smallwer than for Q. This explains the lower reactivity of quinones. Another factor that slows down the reduction is the presence of positively charged aliphatic substituents. Full article
(This article belongs to the Special Issue Redox Enzymes of Bacteria and Parasites as Potential Drug Targets)
Show Figures

Figure 1

16 pages, 1090 KB  
Article
3D-QSAR and Cell Wall Permeability of Antitubercular Nitroimidazoles against Mycobacterium tuberculosis
by Sang-Ho Lee, Minsung Choi, Pilho Kim and Pyung Keun Myung
Molecules 2013, 18(11), 13870-13885; https://doi.org/10.3390/molecules181113870 - 8 Nov 2013
Cited by 7 | Viewed by 6269
Abstract
Inhibitory activities of monocyclic nitroimidazoles against Mycobacterium tuberculosis (Mtb) deazaflavin-dependent nitroreductase (DDN) were modeled by using docking, pharmacophore alignment and comparative molecular similarity indices analysis (CoMSIA) methods. A statistically significant model obtained from CoMSIA was established based on a training set using pharmacophore-based [...] Read more.
Inhibitory activities of monocyclic nitroimidazoles against Mycobacterium tuberculosis (Mtb) deazaflavin-dependent nitroreductase (DDN) were modeled by using docking, pharmacophore alignment and comparative molecular similarity indices analysis (CoMSIA) methods. A statistically significant model obtained from CoMSIA was established based on a training set using pharmacophore-based molecular alignment. The leave-one out cross-validation correlation coefficients q2 (CoMSIA) were 0.681. The CoMSIA model had a good correlation (/CoMSIA = 0.611) between the predicted and experimental activities against excluded test sets. The generated model suggests that electrostatic, hydrophobic and hydrogen bonding interactions all play important roles for interaction between ligands and receptors. The predicted cell wall permeability (logPapp) for substrates with high inhibitory activity against Mtb were investigated. The distribution coefficient (logD) range was 2.41 < logD < 2.89 for the Mtb cell wall membrane permeability. The larger the polar surface area is, the better the permeability is. A larger radius of gyration (rgry) and a small fraction of rotatable bonds (frtob) of these molecules leads to higher cell wall penetration ability. The information obtained from the in silico tools might be useful in the design of more potent compounds that are active against Mtb. Full article
Show Figures

Figure 1

Back to TopTop