Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = daily start and stop operation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 20819 KiB  
Article
Research on the Operation Optimization of Public Building Systems in Extremely Cold Areas Based on Flexible Loads
by Chuan Tian, Shunli Jiang, Shuai Li, Guohui Feng and Bin Yu
Energies 2024, 17(23), 5940; https://doi.org/10.3390/en17235940 - 26 Nov 2024
Viewed by 666
Abstract
The heating energy consumption in public buildings in cold regions is notably significant, presenting substantial scope for energy savings and emission reductions. Flexible loads can actively participate in controlling the operation of the power grid, improving the energy utilization and the economy of [...] Read more.
The heating energy consumption in public buildings in cold regions is notably significant, presenting substantial scope for energy savings and emission reductions. Flexible loads can actively participate in controlling the operation of the power grid, improving the energy utilization and the economy of the system. This study introduces flexible loads into the operation optimization of energy systems, establishing mathematical models for flexible thermal and electrical loads. A two-stage operation optimization method is proposed: the first stage simulates the starting and stopping control conditions of equipment at varying temperatures and times, selecting the optimal time period to regulate the thermal loads; the second stage employs a multi-objective particle swarm optimization algorithm to optimize the scheduling of the system’s electrical load. Finally, an empirical analysis is carried out in a public building in Shenyang City as an example, and the results indicate that optimal scheduling of flexible thermal and electrical loads reduces the daily operating cost of the energy supply system by RMB 124.12 and decreases carbon emissions by 22.7%. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

16 pages, 3154 KiB  
Article
Optimization of Anti-Plugging Working Parameters for Alternating Injection Wells of Carbon Dioxide and Water
by Kemin Li, Guangsheng Cao, Gaojun Shan, Ning Zhang, Xincheng Liu, Shengbo Zhai and Yujie Bai
Processes 2022, 10(11), 2447; https://doi.org/10.3390/pr10112447 - 18 Nov 2022
Cited by 1 | Viewed by 1834
Abstract
In the process of oilfield development, the use of CO2 can improve the degree of reservoir production. Usually, CO2 is injected alternately with water to expand the spread range of CO2, and CO2 presents a supercritical state in [...] Read more.
In the process of oilfield development, the use of CO2 can improve the degree of reservoir production. Usually, CO2 is injected alternately with water to expand the spread range of CO2, and CO2 presents a supercritical state in the formation conditions. In the process of alternating CO2 and water injection, wellbore freezing and plugging frequently occur. In order to determine the cause of freezing and plugging of injection wells, the supercritical CO2 flooding test area of YSL Oilfield in China is taken as an example to analyze the situation of freezing and plugging wells in the test area. The reasons for hydrate freezing and plugging are obtained, the distribution characteristics and sources of hydrate near the well are clarified, and a coupling model is established to calculate the limit injection velocity and limit shut-in time of CO2 and water alternate injection wells. The results show that the main reasons for freezing and plugging of supercritical CO2 water alternate injection wells are long time shut down after alternate injection, improper operation when stopping injection and starting and stopping pumps, and slow injection speed during alternate injection. In the process of supercritical CO2 water alternative injection, in the case of post-injection, the CO2 in the formation will reverse diffuse to the injection well end. With the continuous increase of daily water injection, the initial diffusion position and the time of CO2 diffusion to the perforated hole after well shut-in gradually increase. The time of CO2 reverse diffusion to the bottom of the well is 1.6–32.3 d, and the diffusion time in the perforated hole is 1.0–4.5 d. Therefore, the limit shut-in time following injection is 2.6–36.8 d. Following gas injection, the limit shut-in time of a waterproof compound can be divided into three stages according to the change of wellbore pressure: the pressure stabilization stage, pressure-drop stage and formation fluid-return stage. The limit shut-in time of a waterproof compound following gas injection is mainly affected by permeability, cumulative gas injection rate and formation depth. The limit shut-in time of a waterproof compound is 20.0~30.0 days. The research results provide technical support for the wide application of CO2 flooding. Full article
(This article belongs to the Topic Enhanced Oil Recovery Technologies, 2nd Volume)
Show Figures

Figure 1

12 pages, 642 KiB  
Article
Considering Maintenance Cost in Unit Commitment Problems
by Hyeongon Park, Joonhyung Park, Jong-Young Park and Jae-Haeng Heo
Energies 2017, 10(11), 1917; https://doi.org/10.3390/en10111917 - 21 Nov 2017
Cited by 4 | Viewed by 3183
Abstract
Electric power systems worldwide are receiving an increasing volume of wind power generation (WPG) because of environmental concerns and cost declines associated with technological innovation. To manage the uncertainty of WPG, a system operator must commit sufficient conventional generators to provide an appropriate [...] Read more.
Electric power systems worldwide are receiving an increasing volume of wind power generation (WPG) because of environmental concerns and cost declines associated with technological innovation. To manage the uncertainty of WPG, a system operator must commit sufficient conventional generators to provide an appropriate reserve. At times, frequent start and stop operations are applied to certain generators, which incurs maintenance costs associated with thermal-mechanical fatigue. In this paper, we suggest a comprehensive approach to unit commitment (UC) that considers maintenance cost: the parameters of equivalent start (ES) and equivalent base load hours (EBHs) are adopted in the UC problem to determine optimal generation scheduling. A new formulation for the maintenance cost that can be readily combined with an existing mixed integer linear programming algorithm is presented. The effectiveness of the proposed UC method is verified through simulations based on an IEEE 118-bus test system. The simulation results show that considering maintenance cost in the UC problem effectively restricts frequent start and stop operation scheduling. Furthermore, the operating cost is reduced, the required reserve level is maintained, and the computational time is comparable with that of the conventional UC method. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

8 pages, 238 KiB  
Article
Heavy-Duty PHEV Yard Tractor: Controlled Testing and Field Results
by Edward Kellogg and Jordan Smith
World Electr. Veh. J. 2012, 5(1), 246-253; https://doi.org/10.3390/wevj5010246 - 30 Mar 2012
Cited by 1 | Viewed by 1360
Abstract
Diesel powered tractors are used to shuttle cargo trailers from point to point within the confines of a port facility, terminal or warehouse yard. Such operations are similar to those in ground support applications at airports and in industrial warehouses with lift trucks, [...] Read more.
Diesel powered tractors are used to shuttle cargo trailers from point to point within the confines of a port facility, terminal or warehouse yard. Such operations are similar to those in ground support applications at airports and in industrial warehouses with lift trucks, in that the vehicles are used as tools to move goods in a semi-regular pattern. Southern California Edison Company (SCE) and the Electric Power Research Institute (EPRI) have partnered to help electrify vehicle operations in both of those venues with great success and see good prospects for the same at port operations. However, current port operations might require large investments in infrastructure and operational changes to implement electric drive all at once. To help demonstrate the benefits of electric drive without requiring large-scale changes, a plug-in hybrid electric vehicle (PHEV) yard tractor design was proposed by EPRI and member utilities as a means to reduce operational emissions and diesel fuel use. Four member utility companies with large port customers in their service area (SCE, Southern Company, CenterPoint Energy, and New York Power Authority) agreed to work with EPRI to study the benefits and impacts of a PHEV yard tractor. In 2007 the Electric Power Research Institute (EPRI) contracted US Hybrid Corporation (USH) to design and construct a unique PHEV yard tractor. SCE agreed to test and evaluate the PHEV yard tractor for EPRI. To properly evaluate the benefits realized by the yard tractor in comparison to unmodified conventional yard tractors as well as other alternative fueled tractors, SCE had to test the tractor in controlled conditions with realistic loads in addition to field testing. SCE developed test procedures for controlled testing and for field evaluation. The field testing was conducted in four ports across the United States, each with different operating conditions and climate: Long Beach, California; Houston, Texas; Savannah, Georgia; and New York City. SCE designed a test procedure that simulates an accelerated duty cycle of cargo operations. The accelerated duty cycle has multiple starts and stops and little idle time. SCE measured the idling fuel consumption separately so it can be inserted to match the duty cycle of any particular port. The test cycle was performed with the vehicle both unloaded and loaded to profile the effects of load on system efficiencies. SCE also tested the battery and charger performance of the PHEV, and as a comparison, tested an unmodified yard tractor. In the accelerated testing, SCE found the PHEV fuel savings were as high as 60% (on a per-cycle basis) when compared to a stock diesel Kalmar tractor, and up to 35% fuel savings versus operating the PHEV tractor as a hybrid (i.e, not charging it), In charge sustaining operation, the fuel savings are as high as 40% compared to the stock vehicle. On a daily-operation basis, the projected fuel savings on a duty cycle similar to the SCE test cycle could be as low as 35% but as high as 60% with significant amounts of idling and low speed operation. The field test results show good fuel economy but are complicated by reliability issues that reduced the operational time of the prototype PHEV vehicle. Also, it was difficult to get fleet fuel use data. It was the intention in the project to compare the test vehicle’s results with the fleet average fuel use per unit time. These results will be discussed in the body of the paper. Port operators, in general, appreciated the engineoff mode’s reduced noise and exhaust. The US Hybrid prototype PHEV yard tractor has the potential to significantly reduce fuel consumption, as demonstrated in the SCE tests. Performance issues with the prototype prevented full duty in the field tests. Further testing, with a more reliable vehicle incorporating the key system improvements learned from this project, is worth pursuing to determine if the potential fuel savings can be fully realized in larger scale. Furthermore, the techniques and testing methods described can be used for other alternatively-fueled yard tractors. Full article
Back to TopTop