Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = cyclic (alkyl)(amino) carbene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 889 KB  
Article
Efficient Glycolysis of Polyethylene Terephthalate (PET) Catalyzed by Cyclic(alkyl)(amino)carbene Copper Complexes
by Lei Zhou, Irfan Purnawan, Nurul Hidayati Fithriyah, Mingxin Li, Hao Huang, Jiaqin He and Yuanyou Wang
Molecules 2025, 30(23), 4521; https://doi.org/10.3390/molecules30234521 - 23 Nov 2025
Viewed by 718
Abstract
Polyethylene terephthalate (PET) is widely used, yet the accumulation of its waste poses serious environmental challenges, making efficient recycling essential. PET glycolysis using EG as a solvent has emerged as a green recycling strategy. In this study, a cyclic alkylamino carbene copper (CAAC-Cu) [...] Read more.
Polyethylene terephthalate (PET) is widely used, yet the accumulation of its waste poses serious environmental challenges, making efficient recycling essential. PET glycolysis using EG as a solvent has emerged as a green recycling strategy. In this study, a cyclic alkylamino carbene copper (CAAC-Cu) complex was prepared as a catalyst for PET glycolysis. Under optimized conditions (160 °C, 90 min, catalyst amount 3 wt%, and PET/EG = 1:4.), PET conversion reached 98.2%, the selectivity toward BHET was 88.1%, and the yield was 86.5%. Kinetic analysis indicated that the glycolysis follows first-order kinetics with an activation energy of 98.7 kJ mol−1. In addition, the catalyst can be recovered together with excess EG, and after multiple recycles, PET degradation remained above 95% and BHET yield remained above 80%. A possible mechanism has also been proposed: Cu acts as a Lewis acid coordinating to the carbonyl oxygen of PET, facilitating ester bond activation, while the amino-carbene forms hydrogen bonds with EG, assisting bond cleavage in a Brønsted-base manner. This catalytic system provides a novel and efficient approach for the green, high-performance glycolysis of PET. Full article
Show Figures

Graphical abstract

13 pages, 3314 KB  
Article
The Equilibrium Molecular Structure of Cyclic (Alkyl)(Amino) Carbene Copper(I) Chloride via Gas-Phase Electron Diffraction and Quantum Chemical Calculations
by Alexander V. Belyakov, Ekaterina P. Altova, Anatoliy N. Rykov, Pavel Yu. Sharanov, Igor F. Shishkov and Alexander S. Romanov
Molecules 2023, 28(19), 6897; https://doi.org/10.3390/molecules28196897 - 1 Oct 2023
Cited by 3 | Viewed by 2616
Abstract
Copper-centered carbene–metal–halides (CMHs) with cyclic (alkyl)(amino) carbenes (CAACs) are bright phosphorescent emitters and key precursors in the synthesis of the highly promising class of the materials carbene–metal–amides (CMAs) operating via thermally activated delayed fluorescence (TADF). Aiming to reveal the molecular geometry for CMH [...] Read more.
Copper-centered carbene–metal–halides (CMHs) with cyclic (alkyl)(amino) carbenes (CAACs) are bright phosphorescent emitters and key precursors in the synthesis of the highly promising class of the materials carbene–metal–amides (CMAs) operating via thermally activated delayed fluorescence (TADF). Aiming to reveal the molecular geometry for CMH phosphors in the absence of the intermolecular contacts, we report here the equilibrium molecular structure of the (CAAC)Cu(I)Cl (1) molecule in the gas-phase. We demonstrate that linear geometry around a copper atom shows no distortions in the ground state. The structure of complex 1 has been determined using the electron diffraction method, supported by quantum chemical calculations with RI-MP2/def2-QZVPP level of theory and compared with the crystal structure determined by X-ray diffraction analysis. Mean vibrational amplitudes, uij,h1, and anharmonic vibrational corrections (rij,erij,a) were calculated for experimental temperature T = 20 °C, using quadratic and cubic force constants, respectively. The quantum theory of atoms in molecules (QTAIM) and natural bond order (NBO) analysis of wave function at MN15/def2TZVP level of theory revealed two CuH, three HH, and one three-center HHH bond paths with bond critical points. NBO analysis also revealed three-center, four-electron hyperbonds, (3c4e), [π(N–C) nπ(Cu) ↔ nπ(N) π(N–Cu)], or [N–C: Cu ↔ N: C–Cu] and nπ(Cu) → π(C–N)* hyperconjugation, that is the delocalization of the lone electron pair of Cu atom into the antibonding orbital of C–N bond. Full article
Show Figures

Figure 1

16 pages, 3896 KB  
Article
Tailoring Carbene–Metal–Amides for Thermally Activated Delayed Fluorescence: A Computationally Guided Study on the Effect of Cyclic (Alkyl)(amino)carbenes
by Nguyen Le Phuoc, Alexander C. Brannan, Alexander S. Romanov and Mikko Linnolahti
Molecules 2023, 28(11), 4398; https://doi.org/10.3390/molecules28114398 - 28 May 2023
Cited by 9 | Viewed by 3561
Abstract
Gold-centered carbene–metal–amides (CMAs) containing cyclic (alkyl)(amino)carbenes (CAACs) are promising emitters for thermally activated delayed fluorescence (TADF). Aiming at the design and optimization of new TADF emitters, we report a density functional theory study of over 60 CMAs with various CAAC ligands, systematically evaluating [...] Read more.
Gold-centered carbene–metal–amides (CMAs) containing cyclic (alkyl)(amino)carbenes (CAACs) are promising emitters for thermally activated delayed fluorescence (TADF). Aiming at the design and optimization of new TADF emitters, we report a density functional theory study of over 60 CMAs with various CAAC ligands, systematically evaluating computed parameters in relation to photoluminescence properties. The CMA structures were primarily selected based on experimental synthesis prospects. We demonstrate that TADF efficiency of the CMA materials originates from a compromise between oscillator strength coefficients and exchange energy (ΔEST). The latter is governed by the overlap of HOMO and LUMO orbitals, where HOMO is localized on the amide and LUMO over the Au–carbene bond. The S0 ground and excited T1 states of the CMAs adopt approximately coplanar geometry of carbene and amide ligands, but rotate perpendicular in the excited S1 states, resulting in degeneracy or near-degeneracy of S1 and T1, accompanied by a decrease in the S1-S0 oscillator strength from its maximum at coplanar geometries to near zero at rotated geometries. Based on the computations, promising new TADF emitters are proposed and synthesized. Bright CMA complex (Et2CAAC)Au(carbazolide) is obtained and fully characterized in order to demonstrate that excellent stability and high radiative rates up to 106 s−1 can be obtained for the gold–CMA complexes with small CAAC–carbene ligands. Full article
Show Figures

Graphical abstract

56 pages, 12251 KB  
Review
Decomposition of Ruthenium Olefin Metathesis Catalyst
by Magdalena Jawiczuk, Anna Marczyk and Bartosz Trzaskowski
Catalysts 2020, 10(8), 887; https://doi.org/10.3390/catal10080887 - 5 Aug 2020
Cited by 62 | Viewed by 14576
Abstract
Ruthenium olefin metathesis catalysts are one of the most commonly used class of catalysts. There are multiple reviews on their uses in various branches of chemistry and other sciences but a detailed review of their decomposition is missing, despite a large number of [...] Read more.
Ruthenium olefin metathesis catalysts are one of the most commonly used class of catalysts. There are multiple reviews on their uses in various branches of chemistry and other sciences but a detailed review of their decomposition is missing, despite a large number of recent and important advances in this field. In particular, in the last five years several new mechanism of decomposition, both olefin-driven as well as induced by external agents, have been suggested and used to explain differences in the decomposition rates and the metathesis activities of both standard, N-heterocyclic carbene-based systems and the recently developed cyclic alkyl amino carbene-containing complexes. Here we present a review which explores the last 30 years of the decomposition studied on ruthenium olefin metathesis catalyst driven by both intrinsic features of such catalysts as well as external chemicals. Full article
(This article belongs to the Special Issue New Trends in Metathesis Catalysts)
Show Figures

Figure 1

12 pages, 2874 KB  
Article
Towards the Preparation of Stable Cyclic Amino(ylide)Carbenes
by Henning Steinert, Christopher Schwarz, Alexander Kroll and Viktoria H. Gessner
Molecules 2020, 25(4), 796; https://doi.org/10.3390/molecules25040796 - 12 Feb 2020
Cited by 9 | Viewed by 5329
Abstract
Cyclic amino(ylide)carbenes (CAYCs) are the ylide-substituted analogues of N-heterocyclic Carbenes (NHCs). Due to the stronger π donation of the ylide compared to an amino moiety they are stronger donors and thus are desirable ligands for catalysis. However, no stable CAYC has been [...] Read more.
Cyclic amino(ylide)carbenes (CAYCs) are the ylide-substituted analogues of N-heterocyclic Carbenes (NHCs). Due to the stronger π donation of the ylide compared to an amino moiety they are stronger donors and thus are desirable ligands for catalysis. However, no stable CAYC has been reported until today. Here, we describe experimental and computational studies on the synthesis and stability of CAYCs based on pyrroles with trialkyl onium groups. Attempts to isolate two CAYCs with trialkyl phosphonium and sulfonium ylides resulted in the deprotonation of the alkyl groups instead of the formation of the desired CAYCs. In case of the PCy3-substituted system, the corresponding ylide was isolated, while deprotonation of the SMe2-functionalized compound led to the formation of ethene and the thioether. Detailed computational studies on various trialkyl onium groups showed that both the α- and β-deprotonated compounds were energetically favored over the free carbene. The most stable candidates were revealed to be α-hydrogen-free adamantyl-substituted onium groups, for which β-deprotonation is less favorable at the bridgehead position. Overall, the calculations showed that the isolation of CAYCs should be possible, but careful design is required to exclude decomposition pathways such as deprotonations at the onium group. Full article
(This article belongs to the Special Issue Carbon Ligands: From Fundamental Aspects to Applications)
Show Figures

Graphical abstract

14 pages, 11258 KB  
Review
Bulky-Yet-Flexible Carbene Ligands and Their Use in Palladium Cross-Coupling
by Sofie M. P. Vanden Broeck, Fady Nahra and Catherine S. J. Cazin
Inorganics 2019, 7(6), 78; https://doi.org/10.3390/inorganics7060078 - 21 Jun 2019
Cited by 31 | Viewed by 7504
Abstract
In recent years, several classes of new N-heterocyclic carbene (NHC) ligands were developed around the concept of “flexible steric bulk”. The steric hindrance of these ligands brings stability to the active species, while ligand flexibility still allows for the approach of the [...] Read more.
In recent years, several classes of new N-heterocyclic carbene (NHC) ligands were developed around the concept of “flexible steric bulk”. The steric hindrance of these ligands brings stability to the active species, while ligand flexibility still allows for the approach of the substrate. In this review, the synthesis of several types of new classes, such as IBiox, cyclic alkyl amino carbenes (CAAC), ITent, and IPr* are discussed, as well as how they move the state-of-the-art in palladium catalyzed cross-coupling forward. Full article
(This article belongs to the Special Issue Palladium Catalysts: From Design to Applications)
Show Figures

Graphical abstract

Back to TopTop