Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = custom cable assemblies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2246 KiB  
Article
Surface-Enhanced Raman Scattering in Silver-Coated Suspended-Core Fiber
by Yangyang Xu, Xian Zhang, Xiao-Song Zhu and Yi-Wei Shi
Sensors 2024, 24(1), 160; https://doi.org/10.3390/s24010160 - 27 Dec 2023
Viewed by 1999
Abstract
In this paper, the silver-coated large-core suspended-core fiber (LSCF) probe was fabricated by the dynamic chemical liquid phase deposition method for surface-enhanced Raman scattering (SERS) sensing. The 4-mercaptophenylboronic acid (4-MPBA) monolayer was assembled in the LSCF as the recognition monolayer. Taking advantage of [...] Read more.
In this paper, the silver-coated large-core suspended-core fiber (LSCF) probe was fabricated by the dynamic chemical liquid phase deposition method for surface-enhanced Raman scattering (SERS) sensing. The 4-mercaptophenylboronic acid (4-MPBA) monolayer was assembled in the LSCF as the recognition monolayer. Taking advantage of the appropriate core size of the LSCF, a custom-made Y-type optical fiber patch cable was utilized to connect the semiconductor laser, Raman spectrometer, and the proposed fiber SERS probe. The SERS signal is propagated in the silver-coated air channels, which can effectively reduce the Raman and fluorescence background of the silica core. Experiments were performed to measure the Raman scattering spectra of the 4-MPBA in the silver-coated LSCF in a non-enhanced and enhanced case. The experiment results showed that the Raman signal strength was enhanced more than 6 times by the surface plasmon resonance compared with the non-enhanced case. The proposed LSCF for SERS sensing technology provides huge research value for the fiber SERS probes in biomedicine and environmental science. The combination of SERS and microstructured optical fibers offers a potential approach for SERS detection Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

18 pages, 27869 KiB  
Article
A Fully 3D-Printed Steerable Instrument for Minimally Invasive Surgery
by Costanza Culmone, Kirsten Lussenburg, Joost Alkemade, Gerwin Smit, Aimée Sakes and Paul Breedveld
Materials 2021, 14(24), 7910; https://doi.org/10.3390/ma14247910 - 20 Dec 2021
Cited by 16 | Viewed by 7165
Abstract
In the field of medical instruments, additive manufacturing allows for a drastic reduction in the number of components while improving the functionalities of the final design. In addition, modifications for users’ needs or specific procedures become possible by enabling the production of single [...] Read more.
In the field of medical instruments, additive manufacturing allows for a drastic reduction in the number of components while improving the functionalities of the final design. In addition, modifications for users’ needs or specific procedures become possible by enabling the production of single customized items. In this work, we present the design of a new fully 3D-printed handheld steerable instrument for laparoscopic surgery, which was mechanically actuated using cables. The pistol-grip handle is based on ergonomic principles and allows for single-hand control of both grasping and omnidirectional steering, while compliant joints and snap-fit connectors enable fast assembly and minimal part count. Additive manufacturing allows for personalization of the handle to each surgeon’s needs by adjusting specific dimensions in the CAD model, which increases the user’s comfort during surgery. Testing showed that the forces on the instrument handle required for steering and grasping were below 15 N, while the grasping force efficiency was calculated to be 10–30%. The instrument combines the advantages of additive manufacturing with regard to personalization and simplified assembly, illustrating a new approach to the design of advanced surgical instruments where the customization for a single procedure or user’s need is a central aspect. Full article
(This article belongs to the Collection 3D Printing in Medicine and Biomedical Engineering)
Show Figures

Graphical abstract

10 pages, 4222 KiB  
Communication
The Fiber Optic Reel System: A Compact Deployment Solution for Tethered Live-Telemetry Deep-Sea Robots and Sensors
by Brennan T. Phillips, Nicholas Chaloux, Russell Shomberg, Adriana Muñoz-Soto and Jim Owens
Sensors 2021, 21(7), 2526; https://doi.org/10.3390/s21072526 - 4 Apr 2021
Cited by 6 | Viewed by 7487
Abstract
Tethered deep-sea robots and instrument platforms, such as Remotely Operated Vehicles (ROVs) and vertical-profiling or towed instrument arrays, commonly rely on fiber optics for real-time data transmission. Fiber optic tethers used for these applications are either heavily reinforced load-bearing cables used to support [...] Read more.
Tethered deep-sea robots and instrument platforms, such as Remotely Operated Vehicles (ROVs) and vertical-profiling or towed instrument arrays, commonly rely on fiber optics for real-time data transmission. Fiber optic tethers used for these applications are either heavily reinforced load-bearing cables used to support lifting and pulling, or bare optical fibers used in non-load bearing applications. Load-bearing tethers directly scale operations for deep-sea robots as the cable diameter, mass, and length typically require heavy winches and large surface support vessels to operate, and also guide the design of the deep-sea robot itself. In an effort to dramatically reduce the physical scale and operational overhead of tethered live-telemetry deep-sea robots and sensors, we have developed the Fiber Optic Reel System (FOReelS). FOReelS utilizes a customized electric fishing reel outfitted with a proprietary hollow-core braided fiber optic fishing line and mechanical termination assembly (FOFL), which offers an extremely small diameter (750 μm) load-bearing (90 lb/400 N breaking strength) tether to support live high-bandwidth data transmission as well as fiber optic sensing applications. The system incorporates a novel epoxy potted data payload system (DPS) that includes high-definition video, integrated lighting, rechargeable battery power, and gigabit ethernet fiber optic telemetry. In this paper we present the complete FOReelS design and field demonstrations to depths exceeding 780 m using small coastal support vessels of opportunity. FOReelS is likely the smallest form factor live-telemetry deep-sea exploration tool currently in existence, with a broad range of future applications envisioned for oceanographic sensing and communication. Full article
(This article belongs to the Special Issue Advances in Ocean Sensors)
Show Figures

Figure 1

26 pages, 6087 KiB  
Article
Improving a Manufacturing Process Using the 8Ds Method. A Case Study in a Manufacturing Company
by Arturo Realyvásquez-Vargas, Karina Cecilia Arredondo-Soto, Jorge Luis García-Alcaraz and Emilio Jiménez Macías
Appl. Sci. 2020, 10(7), 2433; https://doi.org/10.3390/app10072433 - 2 Apr 2020
Cited by 20 | Viewed by 9846
Abstract
Customer satisfaction is a key element for survival and competitiveness in industrial companies. This paper describes a case study in a manufacturing company that deals with several customer complaints due to defective custom cable assemblies that are integrated in an engine. The goal [...] Read more.
Customer satisfaction is a key element for survival and competitiveness in industrial companies. This paper describes a case study in a manufacturing company that deals with several customer complaints due to defective custom cable assemblies that are integrated in an engine. The goal of this research is to find a solution to this problem, as well as prevent its recurrence by implementing the eight disciplines (8Ds) method in order to: (1) develop a team, (2) describe the problem, (3) develop an interim containment action, (4) determine and verify root causes, (5) develop permanent corrective actions, (6) define and implement corrective actions, (7) prevent recurrences, and (8) recognize and congratulate teamwork as well as individual contributions. Therefore, a software tool is proposed to conduct a functional test on assembly lines. After the test, the problem was successfully reduced and detected, because from 67 engines that were identified with problems, 51 were redesigned before being sent to customers, consequently decreasing the number of defective products by 75%, whereas the remaining 16 engines were replaced by new engines. In conclusion, the research goal was accomplished, and the 8Ds method proved to be a helpful model with which to increase employees’ motivation and involvement during the problem-solving process. Full article
(This article belongs to the Special Issue Design and Management of Manufacturing Systems)
Show Figures

Figure 1

15 pages, 3479 KiB  
Article
A Low-Cost Soft Robotic Hand Exoskeleton for Use in Therapy of Limited Hand–Motor Function
by Grant Rudd, Liam Daly, Vukica Jovanovic and Filip Cuckov
Appl. Sci. 2019, 9(18), 3751; https://doi.org/10.3390/app9183751 - 8 Sep 2019
Cited by 39 | Viewed by 8337
Abstract
We present the design and validation of a low-cost, customizable and 3D-printed anthropomorphic soft robotic hand exoskeleton for rehabilitation of hand injuries using remotely administered physical therapy regimens. The design builds upon previous work done on cable actuated exoskeleton designs by implementing the [...] Read more.
We present the design and validation of a low-cost, customizable and 3D-printed anthropomorphic soft robotic hand exoskeleton for rehabilitation of hand injuries using remotely administered physical therapy regimens. The design builds upon previous work done on cable actuated exoskeleton designs by implementing the same kinematic functionality, but with the focus shifted to ease of assembly and cost effectiveness as to allow patients and physicians to manufacture and assemble the hardware necessary to implement treatment. The exoskeleton was constructed solely from 3D-printed and widely available off-the-shelf components. Control of the actuators was realized using an Arduino microcontroller, with a custom-designed shield to facilitate ease of wiring. Tests were conducted to verify that the range of motion of the digits and the forces exerted at the fingertip coincided with those of a healthy human hand. Full article
(This article belongs to the Special Issue Soft Robotics: New Design, Control, and Application)
Show Figures

Figure 1

16 pages, 3483 KiB  
Article
Remote-Controlled Fully Implantable Neural Stimulator for Freely Moving Small Animal
by Seunghyeon Yun, Chin Su Koh, Joonsoo Jeong, Jungmin Seo, Seung-Hee Ahn, Gwang Jin Choi, Shinyong Shim, Jaewoo Shin, Hyun Ho Jung, Jin Woo Chang and Sung June Kim
Electronics 2019, 8(6), 706; https://doi.org/10.3390/electronics8060706 - 22 Jun 2019
Cited by 28 | Viewed by 7130
Abstract
The application of a neural stimulator to small animals is highly desired for the investigation of electrophysiological studies and development of neuroprosthetic devices. For this purpose, it is essential for the device to be implemented with the capabilities of full implantation and wireless [...] Read more.
The application of a neural stimulator to small animals is highly desired for the investigation of electrophysiological studies and development of neuroprosthetic devices. For this purpose, it is essential for the device to be implemented with the capabilities of full implantation and wireless control. Here, we present a fully implantable stimulator with remote controllability, compact size, and minimal power consumption. Our stimulator consists of modular units of (1) a surface-type cortical array for inducing directional change of a rat, (2) a depth-type array for providing rewards, and (3) a package for accommodating the stimulating electronics, a battery and ZigBee telemetry, all of which are assembled after independent fabrication and implantation using customized flat cables and connectors. All three modules were packaged using liquid crystal polymer (LCP) to avoid any chemical reaction after implantation. After bench-top evaluation of device functionality, the stimulator was implanted into rats to train the animals to turn to the left (or right) following a directional cue applied to the barrel cortex. Functionality of the device was also demonstrated in a three-dimensional (3D) maze structure, by guiding the rats to better navigate in the maze. The movement of the rat could be wirelessly controlled by a combination of artificial sensation evoked by the surface electrode array and reward stimulation. We could induce rats to turn left or right in free space and help their navigation through the maze. The polymeric packaging and modular design could encapsulate the devices with strict size limitations, which made it possible to fully implant the device into rats. Power consumption was minimized by a dual-mode power-saving scheme with duty cycling. The present study demonstrated feasibility of the proposed neural stimulator to be applied to neuroprosthesis research. Full article
(This article belongs to the Special Issue Smart Electrical Circuits and Systems for Neural Interface)
Show Figures

Figure 1

Back to TopTop