Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (56)

Search Parameters:
Keywords = crystallographic slip

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2460 KB  
Article
Interpretation of Copper Rolling Texture Components Development Based on Computer Modeling
by Wiesław Łatas, Mirosław Wróbel, Krzysztof Wierzbanowski and Dorota Byrska-Wójcik
Crystals 2025, 15(12), 1011; https://doi.org/10.3390/cryst15121011 - 24 Nov 2025
Viewed by 431
Abstract
Plastic deformation processes are widely used in metal forming. At the same time, they produce crystallographic textures that determine a material’s anisotropy—for example, its elastic, plastic, or magnetic anisotropy. Because these properties have significant practical implications and require precise control, understanding the mechanisms [...] Read more.
Plastic deformation processes are widely used in metal forming. At the same time, they produce crystallographic textures that determine a material’s anisotropy—for example, its elastic, plastic, or magnetic anisotropy. Because these properties have significant practical implications and require precise control, understanding the mechanisms of texture formation is essential. Consequently, the evolution of texture during plastic forming remains an important topic for both scientific and engineering communities. The most important models describing crystallographic texture development during plastic deformation were briefly reviewed. Based on a comparison of experimental results with numerical simulations obtained using the authors’ original fluctuating stress state (FSS) model, the main texture components were identified. It was shown that their volume fractions are primarily related to deformation fields in grains of polycrystalline material constrained by extreme boundary conditions, as well as to anisotropy in slip system hardening (A). The influence of both parameters and rolling true strain (1.5 and 2) on the copper rolling texture was evaluated by quantifying the fractions of the texture components, including the strong ones (B, S, Cu) and the weaker ones (G, W, rW). This constitutes the main novelty of the present work. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

18 pages, 4933 KB  
Article
An Investigation of the Performance of Equal Channel Angular Pressed Copper Electrodes in Electric Discharge Machining
by Ülke Şimşek and Can Çoğun
Crystals 2025, 15(10), 849; https://doi.org/10.3390/cryst15100849 - 29 Sep 2025
Cited by 2 | Viewed by 642
Abstract
This study examines the mechanical, thermal, and electrical properties of copper tool electrodes processed via Equal Channel Angular Pressing (ECAP), with a specific focus on their performance in Electrical Discharge Machining (EDM) applications. A novel Crystal Plasticity Finite Element Method (CPFEM) framework is [...] Read more.
This study examines the mechanical, thermal, and electrical properties of copper tool electrodes processed via Equal Channel Angular Pressing (ECAP), with a specific focus on their performance in Electrical Discharge Machining (EDM) applications. A novel Crystal Plasticity Finite Element Method (CPFEM) framework is employed to model anisotropic slip behavior and microscale deformation mechanisms. The primary objective is to elucidate how initial crystallographic orientation influences hardness, thermal conductivity, and electrical conductivity. Simulations are performed on single-crystal copper for three representative Face Centered Cubic (FCC) orientations. Using an explicit CPFEM model, the study examines texture evolution and deformation heterogeneity during the ECAP process of single-crystal copper. The results indicate that the <100> single-crystal orientation exhibits the highest Taylor factor and the most homogeneous distribution of plastic equivalent strain (PEEQ), suggesting enhanced resistance to plastic flow. In contrast, the <111> single-crystal orientation displays localized deformation and reduced hardening. A decreasing Taylor factor correlates with more uniform slip, which improves both electrical and thermal conductivity, as well as machinability, by minimizing dislocation-related resistance. These findings make a novel contribution to the field by highlighting the critical role of crystallographic orientation in governing slip activity and deformation pathways, which directly impact thermal wear resistance and the fabrication efficiency of ECAP-processed copper electrodes in EDM. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

22 pages, 3506 KB  
Article
Influence of Inhomogeneous Plastic Strain and Crystallographic Orientations on Fatigue-Induced Dislocation Structures in FCC Metals
by Tianchang Ma, Yuyang Bai, Haomeng Shi, Yanlong Wei and Chunwei Zhang
Metals 2025, 15(9), 1004; https://doi.org/10.3390/met15091004 - 9 Sep 2025
Viewed by 576
Abstract
Owing to the differences in crystallographic orientations among individual grains, dislocation structures in polycrystals are inherently inhomogeneous from grain to grain. Since intergranular incompatibility is inevitable during plastic deformation, it may consequently lead to unpredictable plastic strain localization, which in turn facilitates the [...] Read more.
Owing to the differences in crystallographic orientations among individual grains, dislocation structures in polycrystals are inherently inhomogeneous from grain to grain. Since intergranular incompatibility is inevitable during plastic deformation, it may consequently lead to unpredictable plastic strain localization, which in turn facilitates the initiation of fatigue crack. Therefore, to elucidate the mechanisms underlying inhomogeneous deformation in polycrystals, this study systematically examines the fatigue-induced dislocation structures in polycrystalline SUS316L stainless steel. We then directly compare them with those in copper single crystals to clarify the dependence of the dislocation structures on crystallographic orientation. SEM characterization demonstrates that high plastic strain near grain boundaries promotes the formation of secondary cell bands (CBs) overlapping the primary CBs, which is attributable to the simultaneous activation of multiple-slip systems under high plastic strain amplitudes. In addition to strain localization, competition among candidate secondary slip systems strongly governs the dislocation structures. Notably, a new type of deformation band (DB) on the (010) plane is identified in a non-coplanar double-slip-oriented grain, a feature not observed in single crystals, indicating that polycrystals accommodate plastic strain through distinct mechanisms. Detailed dislocation structure analysis provides theoretical guidance for mitigating fatigue crack initiation through the manipulation of dislocations. Full article
Show Figures

Figure 1

13 pages, 3334 KB  
Article
Open-Access Crystal Plasticity Finite Element Implementation in ANSYS for Dislocation-Induced Nanoindentation in Magnesium
by Syed Taha Khursheed, Moein Imani Foumani, Yunhua Luo and Guo-zhen Zhu
Inventions 2025, 10(5), 77; https://doi.org/10.3390/inventions10050077 - 28 Aug 2025
Viewed by 1896
Abstract
This study focuses on developing and implementing crystal plasticity finite element modeling (CPFEM) codes on the ANSYS platform. The code incorporates a plasticity constitutive law that describes the behaviors of basal, prismatic, and pyramidal slips in magnesium, and is validated against plane-strain compression [...] Read more.
This study focuses on developing and implementing crystal plasticity finite element modeling (CPFEM) codes on the ANSYS platform. The code incorporates a plasticity constitutive law that describes the behaviors of basal, prismatic, and pyramidal slips in magnesium, and is validated against plane-strain compression experiments and simulations using established codes on the ABAQUS CAE platform. The validated CPFEM code is applied to simulate the dislocation-induced nanoindentation response of pure magnesium across different crystallographic orientations, allowing visualization of strain distributions associated with different slips. Consistent with experimental observations, basal slip is identified as the primary active slip, whereas prismatic and pyramidal slips show varying activities with respect to the direction of the indentation. Novelty arises from an ANSYS–native CPFEM implementation that is cross-validated against published ABAQUS simulations and an experiment under a single, consistent constitutive set. This framework enables orientation-resolved mapping of slip system activity and subsurface strain fields under spherical nanoindentation, providing analysis capability seldom available in prior ANSYS–based studies. Full article
Show Figures

Figure 1

24 pages, 6501 KB  
Article
Exploring Lattice Rotations Induced by Kinematic Constraints in Deep Drawing from Crystal Plasticity Approach
by Yu-Xuan Jiang, Shih-Heng Tung and Jui-Chao Kuo
Metals 2025, 15(8), 883; https://doi.org/10.3390/met15080883 - 7 Aug 2025
Viewed by 668
Abstract
The anisotropic nature of cup ears formed during the deep drawing of sheet metals is governed by the distribution of crystallographic orientation in interaction between earing. In this study, we examined the orientation development of a cube-oriented aluminum single crystal to couple the [...] Read more.
The anisotropic nature of cup ears formed during the deep drawing of sheet metals is governed by the distribution of crystallographic orientation in interaction between earing. In this study, we examined the orientation development of a cube-oriented aluminum single crystal to couple the deep drawing kinematics with the formation of anisotropic orientations. A quarter model of a circular deep-drawn blank was simulated in the finite element software using a user-defined material subroutine. A cube-oriented aluminum single crystal was designed to serve as a reference and trace the orientation evolution in the deep drawing process. After the deep drawing, the bottom, wall, and flange of the drawn cup were investigated at azimuthal angles (α ) of 0° and 45° with respect to the radial direction (RD) in terms of the orientation. Our findings show that the change in the lattice orientation could be attributed to the rotation induced by drawing and bending processes under kinematic constraints. Thus, the initial cube orientation developed into different orientations during the deep drawing. The type-A slip system mainly contributed to the radial strain at α = 0°, and type-B and C slip systems accounted for the longitudinal and circumferential strains at α = 45°. Full article
Show Figures

Graphical abstract

17 pages, 25502 KB  
Article
In Situ EBSD Study of Deformation Behavior at Grain Scale of Inconel 718 Alloy During Tensile Test at 650 °C
by Lijun Sang, Junxia Lu, Xiaopeng Cheng, Yuefei Zhang and Ze Zhang
Materials 2025, 18(9), 1934; https://doi.org/10.3390/ma18091934 - 24 Apr 2025
Cited by 3 | Viewed by 1453
Abstract
In order to clarify the deformation mechanism of Inconel 718 (IN718) alloy at the grain scale during tensile deformation, the deformation behaviors of IN718 alloy were investigated at 650 °C using an in situ electron backscatter diffraction (EBSD) tensile testing method. The evolution [...] Read more.
In order to clarify the deformation mechanism of Inconel 718 (IN718) alloy at the grain scale during tensile deformation, the deformation behaviors of IN718 alloy were investigated at 650 °C using an in situ electron backscatter diffraction (EBSD) tensile testing method. The evolution of grain morphology, crystallographic orientation, activated slip systems, grain boundaries evolution, and strain-induced misorientation were systematically analyzed during the tensile test. The results showed that the grains were elongated along the tensile direction, and the grain boundaries also became significantly curved. Meanwhile, the EBSD studies illustrated that the changes in local misorientation within individual grains were non-uniform and generally began at the grain boundaries. The low-angle grain boundaries (LAGBs) were first formed near the high-angle grain boundaries (HAGBs) and gradually expanded into the interior of the grains. The activation of the slip system and the Schmid factor were characterized and calculated based on the slip traces on the deformed grain surface. The evolution of local strain within the grains was evidenced by a kernel average misorientation (KAM) map. Finally, the plastic deformation mechanism at the grain scale was discussed in detail based on our experimental results. Full article
(This article belongs to the Special Issue Mechanical Properties and Strengthening Mechanism of New Superalloys)
Show Figures

Graphical abstract

27 pages, 25194 KB  
Article
As-Cast Magnesium Alloys with Ca Addition as a Replacement for Magnesium Alloys with Rare Earth Metals
by Tomasz Rzychoń and Agnieszka Fornalczyk
Materials 2025, 18(8), 1860; https://doi.org/10.3390/ma18081860 - 18 Apr 2025
Cited by 1 | Viewed by 1014
Abstract
This article evaluates the possibility of replacing creep-resistant magnesium Mg-Zn-RE-Zr alloys (EZ33) with Mg-Al-Ca-Sr alloys. (1) Background: Mg alloys with RE metals show excellent properties. Due to their high cost, new, more economical Mg alloys are being developed. Replacing RE metals with cheaper [...] Read more.
This article evaluates the possibility of replacing creep-resistant magnesium Mg-Zn-RE-Zr alloys (EZ33) with Mg-Al-Ca-Sr alloys. (1) Background: Mg alloys with RE metals show excellent properties. Due to their high cost, new, more economical Mg alloys are being developed. Replacing RE metals with cheaper elements such as Al and Ca allows us to obtain high mechanical properties at elevated temperatures due to the tendency to form stable intermetallic phases. (2) Methods: Microstructure analysis (LM, SEM, TEM, and XRD) was performed and mechanical properties were tested at ambient and elevated temperatures. (3) Results: Increasing the Ca content and decreasing the Al content leads to the formation of a continuous skeleton of high-melting and brittle Ca-rich Laves phases and Sr-rich intermetallic phases and the formation of plate-like precipitates of the C15 phase inside the α-Mg solid solution. The crystallographic orientation of plate-like precipitates contributes to the blocking of dislocations in slip systems activated at elevated temperatures. Increasing the Ca and Sr content allows for the regulation of the Al concentration in the α-Mg, providing solution strengthening and stability of the α-Mg solid solution. These factors contribute to a significant improvement in creep resistance of Mg-Al-Ca-Sr alloys. (4) Conclusions: The strength properties and elongation at ambient temperature of the Mg alloys with Ca and Sr addition are comparable to those of the EZ33 alloy, and due to the presence of lighter alloying elements, a better specific strength is achieved. Ca-rich Mg-Al-Ca-Sr alloys exhibit better creep resistance at temperatures of up to 200 °C compared to the EZ33 alloy. Full article
(This article belongs to the Special Issue Manufacturing, Characterization and Modeling of Advanced Materials)
Show Figures

Figure 1

30 pages, 50441 KB  
Article
Cavitation and Other Deformation Instabilities in Plastic Deformation of Semicrystalline Polyethylene Modified with Paraffin Wax
by Alina Vozniak and Zbigniew Bartczak
Polymers 2025, 17(2), 202; https://doi.org/10.3390/polym17020202 - 15 Jan 2025
Viewed by 1828
Abstract
The deformation behavior and instabilities occurring during the drawing of high-density polyethylene (HDPE) were investigated using wide- and small-angle X-ray scattering (WAXS and SAXS) and scanning electron microscopy (SEM) in plain HDPE and paraffin wax- and/or chloroform-modified samples. In contrast to neat HDPE, [...] Read more.
The deformation behavior and instabilities occurring during the drawing of high-density polyethylene (HDPE) were investigated using wide- and small-angle X-ray scattering (WAXS and SAXS) and scanning electron microscopy (SEM) in plain HDPE and paraffin wax- and/or chloroform-modified samples. In contrast to neat HDPE, the modified materials demonstrated strongly suppressed cavitation. However, regardless of cavitation, the tensile deformation of all samples was found to be governed by crystallographic mechanisms active in the crystalline lamellae, supported by shear in the amorphous layers, i.e., the same mechanisms as those operating in other deformation modes. In addition to cavitation, which seems to be a tension-specific phenomenon that does not have a major effect on the deformation sequence, two other important deformation instabilities were observed: microbuckling followed by development of lamellar kinks, at true strain of e = 0.3–0.4, and slip localization instability leading to lamellar fragmentation at e > 0.6. These instabilities were found to be common and very important steps in the deformation sequence, greatly influencing the deformation behavior and occurring in similar strain ranges in both compression and tension, regardless of cavitation. In contrast, cavitation is not able to substitute or significantly modify the main deformation mechanisms, and, furthermore, it does not compete with the main instabilities associated with crystalline lamellae, especially microbuckling; therefore, it may be considered a tension-specific side effect that is not essential for plastic deformation behavior, although it can still significantly affect the final properties and appearance of the drawn material. Full article
(This article belongs to the Special Issue Mechanical and Structural Properties of Polymer Materials)
Show Figures

Figure 1

17 pages, 6630 KB  
Article
Microstructural Influences on High Cycle Fatigue Crack Initiation Mechanism in Ti-Al-Mo-Cr-V-Nb-Zr-Sn Metastable β Titanium Alloy
by Chenxi Zhao, Yongxin Wang, Rui Hu, Guoqiang Shang, Yuxue Wu and Yunmei Lu
Materials 2025, 18(2), 336; https://doi.org/10.3390/ma18020336 - 13 Jan 2025
Cited by 2 | Viewed by 2057
Abstract
In this work, the high cycle fatigue behavior and tensile properties of Ti-Al-Mo-Cr-V-Nb-Zr-Sn titanium alloy at room temperature with a basketweave structure and bimodal structure were studied. The results show that the fatigue strength of the basketweave structure is higher, while the balance [...] Read more.
In this work, the high cycle fatigue behavior and tensile properties of Ti-Al-Mo-Cr-V-Nb-Zr-Sn titanium alloy at room temperature with a basketweave structure and bimodal structure were studied. The results show that the fatigue strength of the basketweave structure is higher, while the balance of strength and plasticity of the bimodal microstructure is better. However, the fatigue performance of the bimodal microstructure is unstable due to the bilinear phenomenon of the S-N curve. By fractographic analysis and the study of the crystal orientation, as well as the slip traces of the primary α grains and β matrix at the facets, it was found that the facets are formed on the {101¯1}<112¯0> slip system with the highest Schmid factor, and the microcracks grow along the {110}<111> slip system in the β grain, but the driving force of microcrack propagation may exceed the restriction of crystallographic orientation. Based on the conclusions above, the phenomenological models of the fatigue crack initiation mechanism of Ti-Al-Mo-Cr-V-Nb-Zr-Sn titanium alloy are established. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

16 pages, 7065 KB  
Article
Hot Deformation Behavior of Electron-Beam Cold-Hearth Melted Ti-6Al-4V Alloy
by Weiju Jia, Chengliang Mao and Wei Zhou
Metals 2024, 14(12), 1459; https://doi.org/10.3390/met14121459 - 20 Dec 2024
Viewed by 1205
Abstract
The deformation behavior and microstructure changes of electron-beam cold-hearth-melted (EBCHM) Ti-6Al-4V alloy were investigated. The stress–strain curves of the alloy were obtained, the constitutive model was established based on the Arrhenius equation, and the hot processing map was drawn. The results showed that [...] Read more.
The deformation behavior and microstructure changes of electron-beam cold-hearth-melted (EBCHM) Ti-6Al-4V alloy were investigated. The stress–strain curves of the alloy were obtained, the constitutive model was established based on the Arrhenius equation, and the hot processing map was drawn. The results showed that the stress of the alloy decreases with increasing temperature and decreasing strain rate. In the β phase field, there are more recrystallized grains when the strain rate is slow, and the recrystallization of the β phase does not have enough time to occur when the strain rate is fast. There are obvious shear bands in the microstructure at the strain rate of 10 s−1. In the α + β field, the morphology and crystallographic orientation of the microstructure changed simultaneously. Globularization is a typical microstructure evolution characteristic. The prismatic slip is easier to activate than basal and pyramidal slips. Moreover, globularization of the lamellar α phase is not synchronously crystallographic and morphological. Full article
(This article belongs to the Special Issue Structure and Mechanical Properties of Titanium Alloys)
Show Figures

Figure 1

53 pages, 38612 KB  
Review
Recent Developments in Plastic Deformation Behavior of Titanium and Its Alloys During the Rolling Process: A Review
by Donghee Ryu, Yulhee Kim, Sahn Nahm and Leeseung Kang
Materials 2024, 17(24), 6060; https://doi.org/10.3390/ma17246060 - 11 Dec 2024
Cited by 7 | Viewed by 3385
Abstract
Titanium (Ti) and its alloys are used in various applications, including aircraft frames, ship parts, heat exchangers, and evaporator tubes, because of their extraordinary properties, such as high specific strength, excellent corrosion resistance at high temperatures, good castability, and weldability. Plastic deformation plays [...] Read more.
Titanium (Ti) and its alloys are used in various applications, including aircraft frames, ship parts, heat exchangers, and evaporator tubes, because of their extraordinary properties, such as high specific strength, excellent corrosion resistance at high temperatures, good castability, and weldability. Plastic deformation plays a crucial role in securing the appropriate microstructure and strength of Ti and alloys in these applications. The rolling process, one of the most useful methods for plastic deformation, causes efficient deformation inside the materials, resulting in grain refinement, dislocation slip, and twinning. Recent studies on the rolling behaviors of Ti and its alloys have explored their crystallographic and mechanical properties. These investigations primarily analyzed the microstructural changes and their influence on the mechanical properties under different temperatures and rolling methods. This study elucidates a complex relationship between the processing conditions and the resulting properties. Therefore, this paper presents a comprehensive review of the state-of-the-art Ti rolling. Various key aspects for verifying the microstructure of Ti and its alloys are discussed, including electron backscatter diffraction analysis, Schmidt factor, and misorientation distribution. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

20 pages, 10274 KB  
Article
High-Cycle Fatigue Fracture Behavior and Stress Prediction of Ni-Based Single-Crystal Superalloy with Film Cooling Hole Drilled Using Femtosecond Laser
by Zhen Li, Yuanming Xu, Xinling Liu, Changkui Liu and Chunhu Tao
Metals 2024, 14(12), 1354; https://doi.org/10.3390/met14121354 - 27 Nov 2024
Cited by 1 | Viewed by 1599
Abstract
A high-temperature, high-cycle fatigue test was conducted on a nickel-based single-crystal superalloy with a pore structure. Optical and scanning electron microscopy were utilized to examine the crack propagation paths and fatigue fracture surfaces at the macro and micro scales. The analysis of crack [...] Read more.
A high-temperature, high-cycle fatigue test was conducted on a nickel-based single-crystal superalloy with a pore structure. Optical and scanning electron microscopy were utilized to examine the crack propagation paths and fatigue fracture surfaces at the macro and micro scales. The analysis of crack initiation and propagation related to the pore structure facilitated the development of a crack shape factor reflecting these distinct fracture behaviors. Predictions about the high-cycle fatigue stress experienced by the specimen were made, accompanied by an error analysis, providing critical insights for precise stress calculations and structural optimization in engine blade design. The results reveal that high-cycle fatigue cracks originate from corner cracks at pore edges, with the initial propagation displaying smooth crystallographic plane features. Subsequent stages show clear fatigue arc patterns in the propagation zones. The fracture surface exhibits the significant layering of oxide layers, primarily composed of NiO, with traces of CoO displaying columnar growth. AL2O3 is predominantly found at the interfaces between the matrix and oxide layers. Short and straight dislocations near the oxide layers and within the matrix suggest that dislocation multiplication and planar slip dominate the slip mechanisms in this alloy. The orientation of the fracture surface is mainly perpendicular to the load direction, with minor inclined facets in localized areas. Correlations were established between the plastic zone dimensions at the crack tips and the corresponding fatigue stresses. Without grain boundaries in single-crystal alloys, these dimensions are easily derived as parameters for fatigue stress analysis. The selected crack shape factor, “elliptical corner crack at pore edges”, captures the initiation and propagation traits relevant to porous structures. Subsequent calculations, accounting for the impact of oxide layers on stress assessments, indicated an error ratio ranging from 1.00 to 1.21 compared to nominal stress values. Full article
Show Figures

Figure 1

37 pages, 14896 KB  
Review
Microstructural and Textural Evolution in Hexagonal Close-Packed Metals: The Case of Zirconium, Magnesium, and Titanium
by Khushahal Thool, K. U. Yazar, V. Kavimani, Aman Gupta and Shi-Hoon Choi
Crystals 2024, 14(8), 727; https://doi.org/10.3390/cryst14080727 - 16 Aug 2024
Cited by 12 | Viewed by 5156
Abstract
Hexagonal close-packed (HCP) metals, particularly Zirconium (Zr), Titanium (Ti), and Magnesium (Mg) alloys, have attracted significant attention due to their unique properties and wide-ranging applications in the aerospace, biomedical, and energy industries. This review paper provides a comprehensive analysis of the microstructural and [...] Read more.
Hexagonal close-packed (HCP) metals, particularly Zirconium (Zr), Titanium (Ti), and Magnesium (Mg) alloys, have attracted significant attention due to their unique properties and wide-ranging applications in the aerospace, biomedical, and energy industries. This review paper provides a comprehensive analysis of the microstructural and textural evolution in these HCP materials under various conditions, including rolling, extrusion, drawing, and annealing. The focus of the present work lies on the deformed microstructure and texture development in HCP metals, thus elucidating the fundamental mechanisms that govern their response to mechanical stress. The interaction between dislocation movements, twinning, and slip systems is discussed in detail, illustrating how these factors contribute to the anisotropic behavior characteristic of low-symmetry HCP structures. Unlike high-symmetry metals, deformation in Zr alloys depends on the activation of various slips and twin deformation modes, which are sensitive to crystallographic orientation and strain. Like Zr, Ti alloys present a more complex deformation behavior, heavily influenced by their crystallographic orientation. The most common deformation textures in Ti alloys include split-transverse direction (split-TD), split-rolling direction (split-RD), and normal direction (ND) symmetric basal fiber textures. These textures emerge due to the activation of multiple slip systems and twinning, which are dependent on external factors such as temperature, strain rate, and alloy composition. For Mg alloys, the poor formability and brittleness associated with the dominance of the basal slip system under ambient conditions is a critical material development challenge. The activation of non-basal slip systems introduces complexities in controlling texture and microstructure. However, their activation is crucial for optimizing mechanical properties such as strength and fatigue resistance. The tendency for twinning in Mg alloys further complicates their deformation behavior, leading to challenges in ensuring uniform mechanical performance. Modifying the alloy composition, grain size, and texture can additionally influence the activation of these deformation mechanisms. This review further explores the roles of dynamic recrystallization and grain growth in tailoring mechanical properties, with a particular focus on microstructure and texture evolution during annealing. Through this detailed review, we aim to present a thorough understanding of the microstructural and textural evolution in HCP materials, thereby guiding future research and industrial applications. Full article
(This article belongs to the Special Issue Microstructure and Mechanical Behaviour of Structural Materials)
Show Figures

Figure 1

26 pages, 34851 KB  
Article
The Microdeformation Fabric of Amphibole-Rich Peridotite in the Southern Mariana Trench and Its Influence on Seismic Anisotropy
by Jingbo Li and Zhenmin Jin
Minerals 2024, 14(6), 577; https://doi.org/10.3390/min14060577 - 30 May 2024
Viewed by 1337
Abstract
Olivine, the most abundant mineral in the upper mantle, exhibits elastic anisotropy. Understanding the seismic anisotropy and flow patterns in the upper mantle hinges on the crystallographic preferred orientation (CPO) of olivine. Similarly, hydrous minerals, which also display elastic anisotropy, play a crucial [...] Read more.
Olivine, the most abundant mineral in the upper mantle, exhibits elastic anisotropy. Understanding the seismic anisotropy and flow patterns in the upper mantle hinges on the crystallographic preferred orientation (CPO) of olivine. Similarly, hydrous minerals, which also display elastic anisotropy, play a crucial role in explaining seismic anisotropy in numerous subduction zones. High-temperature and -pressure simple shear experiments reveal that the CPO of amphibole can lead to significant seismic anisotropy. In this study, peridotite samples originating from the southern end of the Mariana Trench, commonly containing amphibole, were analyzed. The microdeformation fabric and seismic anisotropy were examined. The results indicate a weak fabric strength in olivine, yet identifiable deformation fabrics of A/D, D, and AG were observed. Various dislocation structures suggest that olivine experiences complex deformation across various temperatures. Not only can the original slip system transform, but the melt/fluid resulting from melting also has a substantial impact on the peridotite. Deformation precedes the melt/rock interaction, resulting in a strong melt/rock reaction under near-static conditions. Furthermore, the modal content of amphibole significantly alters the seismic anisotropy of peridotite. An increase in amphibole content (types I, III, and IV) enhances seismic anisotropy, particularly for type I amphibole. Notably, the presence of type I fabric amphibole promotes the Vs1 polarization direction parallel to the trench in subduction zones, a phenomenon observed in other subduction zones. Therefore, when considering mantle peridotite regions rich in amphibole, the impact of amphibole on seismic anisotropy must be accounted for. Full article
(This article belongs to the Special Issue Texture and Microstructural Analysis of Crystalline Solids, Volume II)
Show Figures

Figure 1

17 pages, 6252 KB  
Article
Microstructure-Based Modeling of Deformation and Damage Behavior of Extruded and Additively Manufactured 316L Stainless Steels
by Huai Wang, Ho-Won Lee, Minh Tien Tran and Dong-Kyu Kim
Materials 2024, 17(10), 2360; https://doi.org/10.3390/ma17102360 - 15 May 2024
Cited by 9 | Viewed by 2461
Abstract
In this study, we investigated the micromechanical deformation and damage behavior of commercially extruded and additively manufactured 316L stainless steels (AMed SS316L) by combining experimental examinations and crystal plasticity modeling. The AMed alloy was fabricated using the laser powder bed fusion (LPBF) technique [...] Read more.
In this study, we investigated the micromechanical deformation and damage behavior of commercially extruded and additively manufactured 316L stainless steels (AMed SS316L) by combining experimental examinations and crystal plasticity modeling. The AMed alloy was fabricated using the laser powder bed fusion (LPBF) technique with an orthogonal scanning strategy to control the directionality of the as-fabricated material. Optical microscopy and electron backscatter diffraction measurements revealed distinct grain morphologies and crystallographic textures in the two alloys. Uniaxial tensile test results suggested that the LPBFed alloy exhibited an increased yield strength, reduced elongation, and comparable ultimate tensile strength in comparison to those of the extruded alloy. A microstructure-based crystal plasticity model was developed to simulate the micromechanical deformation behavior of the alloys using representative volume elements based on realistic microstructures. A ductile fracture criterion based on the microscopically dissipated plastic energy on a slip system was adopted to predict the microscopic damage accumulation of the alloys during plastic deformation. The developed model could accurately predict the stress–strain behavior and evolution of the crystallographic textures in both the alloys. We reveal that the increased yield strength in the LPBFed alloy, compared to that in the extruded alloy, is attributed to the higher as-manufactured dislocation density and the cellular subgrain structure, resulting in a reduced elongation. The presence of annealing twins and favorable texture in the extruded alloy contributed to its excellent elongation, along with a higher hardening rate owing to twin–dislocation interactions during plastic deformation. Moreover, the grain morphology and defect state (e.g., dislocations and twins) in the initial state can significantly affect strain localization and damage accumulation in alloys. Full article
(This article belongs to the Topic Advances in Computational Materials Sciences)
Show Figures

Figure 1

Back to TopTop