Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = cross-shore adjustment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 10902 KiB  
Article
Swash-Zone Formula Evaluation of Morphological Variation in Haeundae Beach, Korea
by Jong Dae Do, Sang Kwon Hyun, Jae-Youll Jin, Weon-Mu Jeong, Byunggil Lee and Yeon S. Chang
Water 2024, 16(6), 836; https://doi.org/10.3390/w16060836 - 14 Mar 2024
Viewed by 1389
Abstract
In this study, a swash-zone model, using Larson and Wamsley formula (LW07), was combined into the Telemac-2D model system to examine the performance of modeling swash-zone processes through comparisons with field observation data. The experimental site was the Haeundae Beach in South Korea [...] Read more.
In this study, a swash-zone model, using Larson and Wamsley formula (LW07), was combined into the Telemac-2D model system to examine the performance of modeling swash-zone processes through comparisons with field observation data. The experimental site was the Haeundae Beach in South Korea where Typhoon Phanfone occurred in October 2014, and bathymetric surveys were performed before and after the typhoon. Hydrodynamic data were also measured to validate the modeled data. The performance of LW07 was tested by running the model in two modes, with and without LW07. First, the model was run to simulate the shoreline response to an imaginary coastal breakwater. The result showed a clear discrepancy between the two modes as the sediments were considerably cumulated behind the breakwater in the case with the swash-zone formula (LW07) in the wide range along the shoreline behind the breakwater, indicating that the sediments more actively and rapidly responded to the shadowing by the breakwater with LW07. The model was also run for a realistic case from August to October 2014, which included the typhoon’s period during 2–6 October. The results showed that the morphological changes at both ends of the beach in the swash zone were simulated with higher accuracy with LW07, supporting the effectiveness of LW07 in simulating the short-term morphological changes induced by the typhoon attack. In particular, the successful simulation of the sand accumulation at the end sides of the beach’s swash zone indicates that LW07 was effective in estimating not only the cross-shore transport but also longshore transport, which was likely due to the characteristics of LW07 that calculated sand transport in both directions. The enhanced modeling performance with LW07 was likely due to the adjustment of the sediment transport rate to the instantaneous changes in the local beach slope, which could successfully control the erosion/accretion process in the swash zone more realistically. Full article
(This article belongs to the Special Issue Coastal Sediments: Processes, Transport, Modeling and Hydrodynamics)
Show Figures

Figure 1

25 pages, 5169 KiB  
Article
Subaqueous and Subaerial Beach Changes after Implementation of a Mega Nourishment in Front of a Sea Dike
by Anna Kroon, Matthieu de Schipper, Sierd de Vries and Stefan Aarninkhof
J. Mar. Sci. Eng. 2022, 10(8), 1152; https://doi.org/10.3390/jmse10081152 - 20 Aug 2022
Cited by 13 | Viewed by 4590
Abstract
Sandy nourishments can provide additional sediment to the coastal system to maintain its recreational or safety function under rising sea levels. These nourishments can be implemented at sandy beach systems, but can also be used to reinforce gray coastal infrastructure (e.g., dams, dikes, [...] Read more.
Sandy nourishments can provide additional sediment to the coastal system to maintain its recreational or safety function under rising sea levels. These nourishments can be implemented at sandy beach systems, but can also be used to reinforce gray coastal infrastructure (e.g., dams, dikes, seawalls). The Hondsbossche Dunes project is a combined shoreface, beach, and dune nourishment of 35 million m3 sand. The nourishment was built to replace the flood protection function of an old sea-dike while creating additional space for nature and recreation. This paper presents the evolution of this newly created sandy beach system in the first 5 years after implementation based on bathymetric and topographic surveys, acquired every three to six months. A significant coastline curvature is created by the nourishment leading to erosion in the central 7 km bordered by zones with accretion. However, over the five-year period, net volume losses from the project area were less than 5% of the initial nourished sand volume. The man-made cross-shore beach profile rapidly mimics the characteristics of adjacent beaches. The slope of the surfzone is adjusted within two winters to a similar slope. The initially wide beaches (i.e., up to 225 m) are reduced to about 100 m-wide. Simultaneously, the dune volume has increased and the dune foot migrated seaward at the entire nourished site, regardless of whether the subaqueous profile gained or lost sediment. Our results show that the Hondsbossche Dunes nourishment, built with a natural slope and wide beach, created a positive sediment balance in the dune for a prolonged period after placement. As such, natural forces in the years after implementation provided a significant contribution to the growth in dune volume and related safety against flooding. Full article
(This article belongs to the Special Issue Sediment Dynamics in Artificial Nourishments)
Show Figures

Graphical abstract

12 pages, 5217 KiB  
Article
Exploring the Ever-Changing Seashore Using Geoinformatics Technology
by Ibra Lebbe Mohamed Zahir, Buddhika Madurapperuma, Atham Lebbe Iyoob and Kafoor Nijamir
Earth 2021, 2(3), 544-555; https://doi.org/10.3390/earth2030032 - 28 Aug 2021
Cited by 3 | Viewed by 3212
Abstract
Detecting coastal morphodynamics is a crucial task for monitoring shoreline changes and coastal zone management. However, modern technology viz., Geoinformatics paves the way for long-term monitoring and observation with precise output. Therefore, this study aimed to produce explicit shoreline change maps and [...] Read more.
Detecting coastal morphodynamics is a crucial task for monitoring shoreline changes and coastal zone management. However, modern technology viz., Geoinformatics paves the way for long-term monitoring and observation with precise output. Therefore, this study aimed to produce explicit shoreline change maps and analyze the historical changes of the coastline at the east coast of the Ampara District in Sri Lanka. The histogram threshold method is used to extract data from satellite images. The time-series satellite images, acquired from 1987 to 2017, toposheet, and Google Earth historical images were compared having adjusted with the ground-truth to find the seashore changes in the study area. The histogram threshold method is used on band 5 (mid-infrared) for separating land from water pixels which means that the water pixel values were classified to one (1) and land pixel values to zero (0). The extracted shoreline vectors were associated with each other to determine the dynamics of changing shoreline of the study area. The Digital Shoreline Analysis System (DSAS) was used to find shoreline movements for each period of time. As a result, it was observed by the cross-section analysis within 100 m shoreline—seaward range along the study area—in which severe erosion has occurred northward of the Oluvil Harbor and anomalous accretion southward of the harbor because of the breakwaters constructed in the port entrance which hinder the long shore sediment transport along the study area. This situation has resulted in many ramifications to the coastal zone of the study area in socio-economic and environmental aspects in which the coastal protection mechanisms have not been well implemented to curb such issues. Full article
Show Figures

Figure 1

15 pages, 20467 KiB  
Article
Process-Based Model Prediction of Coastal Dune Erosion through Parametric Calibration
by Hyeok Jin, Kideok Do, Sungwon Shin and Daniel Cox
J. Mar. Sci. Eng. 2021, 9(6), 635; https://doi.org/10.3390/jmse9060635 - 7 Jun 2021
Cited by 5 | Viewed by 3415
Abstract
Coastal dunes are important morphological features for both ecosystems and coastal hazard mitigation. Because understanding and predicting dune erosion phenomena is very important, various numerical models have been developed to improve the accuracy. In the present study, a process-based model (XBeachX) was tested [...] Read more.
Coastal dunes are important morphological features for both ecosystems and coastal hazard mitigation. Because understanding and predicting dune erosion phenomena is very important, various numerical models have been developed to improve the accuracy. In the present study, a process-based model (XBeachX) was tested and calibrated to improve the accuracy of the simulation of dune erosion from a storm event by adjusting the coefficients in the model and comparing it with the large-scale experimental data. The breaker slope coefficient was calibrated to predict cross-shore wave transformation more accurately. To improve the prediction of the dune erosion profile, the coefficients related to skewness and asymmetry were adjusted. Moreover, the bermslope coefficient was calibrated to improve the simulation performance of the bermslope near the dune face. Model performance was assessed based on the model-data comparisons. The calibrated XBeachX successfully predicted wave transformation and dune erosion phenomena. In addition, the results obtained from other two similar experiments on dune erosion with the same calibrated set matched well with the observed wave and profile data. However, the prediction of underwater sand bar evolution remains a challenge. Full article
(This article belongs to the Special Issue The Coastal Response Modeling)
Show Figures

Figure 1

24 pages, 16434 KiB  
Article
Observed Changes of a Mega Feeder Nourishment in a Coastal Cell: Five Years of Sand Engine Morphodynamics
by Bart Roest, Sierd de Vries, Matthieu de Schipper and Stefan Aarninkhof
J. Mar. Sci. Eng. 2021, 9(1), 37; https://doi.org/10.3390/jmse9010037 - 1 Jan 2021
Cited by 20 | Viewed by 4925
Abstract
Recently, mega feeder nourishments have been proposed as a new strategy to nourish sediment-starving beaches. This strategy involves the placement of a large, concentrated sediment volume at a single location along the coast. Wind, waves and currents act as the natural agents to [...] Read more.
Recently, mega feeder nourishments have been proposed as a new strategy to nourish sediment-starving beaches. This strategy involves the placement of a large, concentrated sediment volume at a single location along the coast. Wind, waves and currents act as the natural agents to spread the sediment alongshore over the course of years to decades. This article presents the morphological development of the first full-scale implementation of this strategy, examining the 20 × 106 m3“Sand Engine” feeder nourishment and its impact on adjacent coastal sections. The analysis is based on 37 high-resolution topographical surveys, executed in a 17 km coastal cell. These unique data describe the alongshore spreading in the first five years and the response at different elevations of the coastal profile. The analysis shows rapid transformation of the nourishment’s planform shape, changing rapidly into a smooth (Gaussian-like) shape which is gradually extending alongshore over time. Within five years, sediment has been distributed to a 5.8 km stretch of coast from the initial 2.2 km peninsula footprint. Changes in cross-shore and alongshore extent varied strongly over depth, with the strongest morphological response at the mean sea level (MSL) isobath and limited morphodynamic activity at deeper water, below −8 m MSL. This depth-dependent response has resulted in decreasing subtidal slopes in eroding areas, accretive areas contrastingly show a slope increment. These results yield important insights in nourished sediment mobility at different depths near the coast and distribution over a larger coastal cell. However, this single-design assessment cannot address the wide range of mega nourishment design parameters essential for morphological development of its coastal cell. This work suggests limiting cross-shore extent, since it is uncertain whether nourished sediment at deeper water will become active in the coastal system. A continuation of the current monitoring and future research might shed more light on this. Full article
(This article belongs to the Special Issue Observation, Analysis, and Modeling of Nearshore Dynamics)
Show Figures

Figure 1

13 pages, 6699 KiB  
Article
A Wideband Metal-Only Patch Antenna for CubeSat
by Suhila Abulgasem, Faisel Tubbal, Raad Raad, Panagiotis Ioannis Theoharis, Sining Liu and Muhammad Usman Ali Khan
Electronics 2021, 10(1), 50; https://doi.org/10.3390/electronics10010050 - 30 Dec 2020
Cited by 18 | Viewed by 4902
Abstract
This article presents a compact wideband high gain patch antenna for CubeSat. The proposed metal-only antenna mainly consists of an upper patch, a folded ramp-shaped patch and shoring pins connecting the antenna with the ground plane. By adjusting the lengths and widths of [...] Read more.
This article presents a compact wideband high gain patch antenna for CubeSat. The proposed metal-only antenna mainly consists of an upper patch, a folded ramp-shaped patch and shoring pins connecting the antenna with the ground plane. By adjusting the lengths and widths of two arms of the upper F-shaped patch, a second resonant frequency is generated, and hence, the −10 dB bandwidth is increased. Moreover, the effect of arms’ lengths and widths on reflection coefficients, operating frequency and bandwidth is presented. To validate the design and the simulation results, a prototype metal-only patch antenna was fabricated and tested in a Chamber. A good agreement between the simulated and measured results is achieved. The measured results show that the fabricated prototype achieves a −10 dB bandwidth of 44.9% (1.6–2.7 GHz), a small reflection coefficient of −24.4 dB and a high efficiency, i.e., 85% at 2.45 GHz. The radiation performance of the proposed antenna is measured, showing a peak realized gain of 8.5 dBi with cross polarization level less than −20 dB at 2.45 GHz and a 3 dB gain bandwidth of 61.22%. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

13 pages, 5011 KiB  
Article
Synthesis and Application of a Thermoplastic Plate of Poly(lactide-ε-caprolactone) for Radiation Therapy
by Hongli Li, Wenzhi Li, Hongtao Wu, Dengbang Jiang, Mingwei Yuan and Minglong Yuan
Biomolecules 2020, 10(1), 27; https://doi.org/10.3390/biom10010027 - 24 Dec 2019
Cited by 8 | Viewed by 3314
Abstract
In this study, the poly(lactide-ε-caprolactone) (P(LA-CL)) copolymer is synthesized by ring-opening polymerization with glycol used as a molecular weight regulator to adjust the molecular weight of the polymer. The proton nuclear magnetic resonance spectroscopy and gel permeation chromatography (GPC) results demonstrate that the [...] Read more.
In this study, the poly(lactide-ε-caprolactone) (P(LA-CL)) copolymer is synthesized by ring-opening polymerization with glycol used as a molecular weight regulator to adjust the molecular weight of the polymer. The proton nuclear magnetic resonance spectroscopy and gel permeation chromatography (GPC) results demonstrate that the P(LA-CL) copolymer is successfully synthesized, and that the molecular weight can be controlled by the glycol content. The thermoplastic plate is processed with triallyl isocyanurate as a cross-linking agent by a single-screw extruder followed by γ-ray irradiation. Shape memory test results show that the material had the desired shape memory effect, with deformation recovery rates reaching 100%. After secondary stretching of samples, deformation recovery rates are unchanged. The results of mechanical property measurements indicate that with added lactide, the tensile strength is improved and shore hardness is increased by 20%–30%. Data from clinical trials also reveal that the material has good clinical effects in thermoplastic membrane fixation. Full article
(This article belongs to the Special Issue Polylactide: Blends, Composites, and Nanocomposites)
Show Figures

Graphical abstract

Back to TopTop