Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = cranial nerve zoster

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 242 KiB  
Review
Varicella-Zoster Virus Infection and Varicella-Zoster Virus Vaccine-Related Ocular Complications
by Jing Yu, Huihui Li, Yuying Ji and Hailan Liao
Vaccines 2025, 13(8), 782; https://doi.org/10.3390/vaccines13080782 - 23 Jul 2025
Viewed by 365
Abstract
The varicella-zoster virus is a human herpesvirus that causes varicella as the primary infection and HZ as the reactivation of a latent infection. Ten to twenty percent of cases of herpes zoster ophthalmicus (HZO) involve the ophthalmic branch of the fifth cranial nerve. [...] Read more.
The varicella-zoster virus is a human herpesvirus that causes varicella as the primary infection and HZ as the reactivation of a latent infection. Ten to twenty percent of cases of herpes zoster ophthalmicus (HZO) involve the ophthalmic branch of the fifth cranial nerve. Any area of the eye may be affected by the condition. HZ has a lifetime risk of more than 30%. Complications from herpes zoster can significantly lower quality of life. The goal of HZ vaccinations is to stop HZ activation and PHN formation. Despite the uncommon possibility of side effects such as eye problems, the majority of vaccines on the market now are safe. The purpose of this review is to discuss VZV infection and analyze and summarize the ocular complications following VZV vaccination. Full article
(This article belongs to the Special Issue Varicella and Zoster Vaccination)
25 pages, 11367 KiB  
Article
An mRNA Vaccine for Herpes Zoster and Its Efficacy Evaluation in Naïve/Primed Murine Models
by Linglei Jiang, Wenshuo Zhou, Fei Liu, Wenhui Li, Yan Xu, Zhenwei Liang, Man Cao, Li Hou, Pengxuan Liu, Feifei Wu, Aijun Shen, Zhiyuan Zhang, Xiaodi Zhang, Haibo Zhao, Xinping Pan, Tengjie Wu, William Jia and Yuntao Zhang
Vaccines 2025, 13(3), 327; https://doi.org/10.3390/vaccines13030327 - 19 Mar 2025
Cited by 1 | Viewed by 1709
Abstract
Background/Objectives: An overwhelming burden to clinics, herpes zoster (HZ), or shingles, is a painful disease that occurs frequently among aged individuals with a varicella-zoster virus (VZV) infection history. The cause of shingles is the reactivation of dormant VZV in the dorsal root ganglia/cranial [...] Read more.
Background/Objectives: An overwhelming burden to clinics, herpes zoster (HZ), or shingles, is a painful disease that occurs frequently among aged individuals with a varicella-zoster virus (VZV) infection history. The cause of shingles is the reactivation of dormant VZV in the dorsal root ganglia/cranial nerves of the human body. Patients with HZ experience sharp, intense, electric shock-like pain, which makes their health-related quality of life (HRQoL) extremely low. Methods: Various mRNA constructs were designed based on intracellular organelle-targeting strategies and AI algorithm-guided high-throughput automation platform screening and were then synthesized by in vitro transcription and encapsulated with four-component lipid nanoparticles (LNPs). Immunogenicity was evaluated on a naïve mouse model, long-term mouse model, and VZV-primed mouse model. Safety was evaluated by a modified “nestlet shredding” method for potential adverse effects induced by vaccines. Comparison between muscular and intradermal administrations was conducted using different inoculated approaches as well. Results: The best vaccine candidate, CVG206, showed robust humoral and cellular immune responses, durable immune protection, and the fewest adverse effects. The CVG206 administered intradermally revealed at least threefold higher humoral and cellular immune responses compared to intramuscular vaccination. The manufactured and lyophilized patch of CVG206 demonstrated good thermal stability at 2–8 °C during 9 months of storage. Conclusions: The lyophilized mRNA vaccine CVG206 possesses remarkable immunogenicity, long-term protection, safety, and thermal stability, and its effectiveness could even be further improved by intradermal administration, revealing that CVG206 is a promising vaccine candidate for HZ in future clinical studies. Full article
Show Figures

Figure 1

11 pages, 34977 KiB  
Review
Cochleo-Vestibular Disorders in Herpes Zoster Oticus: A Literature Review and a Case of Bilateral Vestibular Hypofunction in Unilateral HZO
by Roberto Teggi, Anna Del Poggio, Iacopo Cangiano, Alessandro Nobile, Omar Gatti and Mario Bussi
J. Clin. Med. 2023, 12(19), 6206; https://doi.org/10.3390/jcm12196206 - 26 Sep 2023
Cited by 2 | Viewed by 2405
Abstract
The varicella-zoster virus (VZV), a member of the Herpesviridae family, causes both the initial varicella infection and subsequent zoster episodes. Disorders of the eighth cranial nerve are common in people with herpes zoster oticus (HZO). We performed a review of the literature on [...] Read more.
The varicella-zoster virus (VZV), a member of the Herpesviridae family, causes both the initial varicella infection and subsequent zoster episodes. Disorders of the eighth cranial nerve are common in people with herpes zoster oticus (HZO). We performed a review of the literature on different databases including PubMed and SCOPUS, focusing on cochlear and vestibular symptoms; 38 studies were considered in our review. A high percentage of cases of HZO provokes cochlear and vestibular symptoms, hearing loss and vertigo, whose onset is normally preceded by vesicles on the external ear. It is still under debate if the sites of damage are the inferior/superior vestibular nerves and cochlear nerves or a direct localization of the infection in the inner ear. The involvement of other contiguous cranial nerves has also been reported in a few cases. We report the case of a patient with single-side HZO presenting clinical manifestations of cochleo-vestibular damage without neurological and meningeal signs; after 15 days, the patient developed a new episode of vertigo with clinical findings of acute contralateral vestibular loss. To our knowledge, only three other such cases have been published. An autoimmune etiology may be considered to explain these findings. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms in Vestibular Disorders)
Show Figures

Figure 1

8 pages, 248 KiB  
Review
The Spectrum of Neurological Manifestations of Varicella–Zoster Virus Reactivation
by Peter G. E. Kennedy
Viruses 2023, 15(8), 1663; https://doi.org/10.3390/v15081663 - 30 Jul 2023
Cited by 31 | Viewed by 6239
Abstract
Varicella–Zoster virus (VZV) is a pathogenic human alpha herpes virus that causes varicella (chicken pox) as a primary infection and, following a variable period of latency in different ganglionic neurons, it reactivates to produce herpes zoster (shingles). The focus of this review is [...] Read more.
Varicella–Zoster virus (VZV) is a pathogenic human alpha herpes virus that causes varicella (chicken pox) as a primary infection and, following a variable period of latency in different ganglionic neurons, it reactivates to produce herpes zoster (shingles). The focus of this review is on the wide spectrum of the possible neurological manifestations of VZV reactivation. While the most frequent reactivation syndrome is herpes zoster, this may be followed by the serious and painful post-herpetic neuralgia (PHN) and by many other neurological conditions. Prominent among these conditions is a VZV vasculopathy, but the role of VZV in causing giant cell arteritis (GCA) is currently controversial. VZV reactivation can also cause segmental motor weakness, myelitis, cranial nerve syndromes, Guillain–Barre syndrome, meningoencephalitis, and zoster sine herpete, where a neurological syndrome occurs in the absence of the zoster rash. The field is complicated by the relatively few cases of neurological complications described and by the issue of causation when a neurological condition is not manifest at the same time as the zoster rash. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
21 pages, 298 KiB  
Review
COVID-19 Vaccine-Associated Ocular Adverse Effects: An Overview
by Parul Ichhpujani, Uday Pratap Singh Parmar, Siddharth Duggal and Suresh Kumar
Vaccines 2022, 10(11), 1879; https://doi.org/10.3390/vaccines10111879 - 7 Nov 2022
Cited by 21 | Viewed by 4277
Abstract
Background: To address the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), vaccination efforts were initiated across the globe in December 2020 and are continuing. We report the onset interval and clinical presentations of ocular adverse effects following SARS-CoV-2 vaccination. Methods: [...] Read more.
Background: To address the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), vaccination efforts were initiated across the globe in December 2020 and are continuing. We report the onset interval and clinical presentations of ocular adverse effects following SARS-CoV-2 vaccination. Methods: For this narrative review, articles in the English language, published between 1 January 2020 to 1 September 2022, were included to formulate a list of the reported ocular adverse effects of different COVID-19 vaccines. Results: During this period, ocular adverse effects have been reported with BNT162b2 (Pfizer), mRNA-1273 (Moderna), AZD-1222 (AstraZeneca), and Ad26.COV2.S (Johnson & Johnson) vaccines. Endothelial graft rejection, herpes simplex virus keratitis, herpes zoster ophthalmicus, anterior uveitis, eyelid edema, purpuric rashes, ischemic optic neuropathy, and cranial nerve palsies were the most reported with BNT163b2. Retinal hemorrhages, vascular occlusions, and angle closure glaucoma were the most reported with AZD-1222. Most of the ocular adverse effects reported in the literature had a good to fair prognosis with appropriate management. Conclusions: Evidence regarding the ocular adverse effects does not outweigh the benefits of SARS-CoV-2 vaccination in patients with pre-existing systemic or ophthalmic diseases. This review provides insights into the possible temporal association between reported ocular adverse events and SARS-CoV-2 vaccines; however, further investigations are required to identify the link between potential causality and pathological mechanisms. Full article
(This article belongs to the Special Issue Ophthalmic Adverse Events following SARS-CoV-2 Vaccination)
14 pages, 1902 KiB  
Article
Dermatitis during Spaceflight Associated with HSV-1 Reactivation
by Satish K. Mehta, Moriah L. Szpara, Bridgette V. Rooney, Douglass M. Diak, Mackenzie M. Shipley, Daniel W. Renner, Stephanie S. Krieger, Mayra A. Nelman-Gonzalez, Sara R. Zwart, Scott M. Smith and Brian E. Crucian
Viruses 2022, 14(4), 789; https://doi.org/10.3390/v14040789 - 11 Apr 2022
Cited by 26 | Viewed by 4239
Abstract
Human alpha herpesviruses herpes simplex virus (HSV-1) and varicella zoster virus (VZV) establish latency in various cranial nerve ganglia and often reactivate in response to stress-associated immune system dysregulation. Reactivation of Epstein Barr virus (EBV), VZV, HSV-1, and cytomegalovirus (CMV) is typically asymptomatic [...] Read more.
Human alpha herpesviruses herpes simplex virus (HSV-1) and varicella zoster virus (VZV) establish latency in various cranial nerve ganglia and often reactivate in response to stress-associated immune system dysregulation. Reactivation of Epstein Barr virus (EBV), VZV, HSV-1, and cytomegalovirus (CMV) is typically asymptomatic during spaceflight, though live/infectious virus has been recovered and the shedding rate increases with mission duration. The risk of clinical disease, therefore, may increase for astronauts assigned to extended missions (>180 days). Here, we report, for the first time, a case of HSV-1 skin rash (dermatitis) occurring during long-duration spaceflight. The astronaut reported persistent dermatitis during flight, which was treated onboard with oral antihistamines and topical/oral steroids. No HSV-1 DNA was detected in 6-month pre-mission saliva samples, but on flight day 82, a saliva and rash swab both yielded 4.8 copies/ng DNA and 5.3 × 104 copies/ng DNA, respectively. Post-mission saliva samples continued to have a high infectious HSV-1 load (1.67 × 107 copies/ng DNA). HSV-1 from both rash and saliva samples had 99.9% genotype homology. Additional physiological monitoring, including stress biomarkers (cortisol, dehydroepiandrosterone (DHEA), and salivary amylase), immune markers (adaptive regulatory and inflammatory plasma cytokines), and biochemical profile markers, including vitamin/mineral status and bone metabolism, are also presented for this case. These data highlight an atypical presentation of HSV-1 during spaceflight and underscore the importance of viral screening during clinical evaluations of in-flight dermatitis to determine viral etiology and guide treatment. Full article
Show Figures

Figure 1

9 pages, 1026 KiB  
Article
Clinical Presentations and Outcome Studies of Cranial Nerve Involvement in Herpes Zoster Infection: A Retrospective Single-Center Analysis
by Po-Wei Tsau, Ming-Feng Liao, Jung-Lung Hsu, Hui-Ching Hsu, Chi-Hao Peng, Yu-Ching Lin, Hung-Chou Kuo and Long-Sun Ro
J. Clin. Med. 2020, 9(4), 946; https://doi.org/10.3390/jcm9040946 - 30 Mar 2020
Cited by 31 | Viewed by 5325
Abstract
Varicella-zoster virus (VZV) infection can cause chickenpox and herpes zoster. It sometimes involves cranial nerves, and rarely, it can involve multiple cranial nerves. We aimed to study clinical presentations of cranial nerve involvement in herpes zoster infection. We included patients who had the [...] Read more.
Varicella-zoster virus (VZV) infection can cause chickenpox and herpes zoster. It sometimes involves cranial nerves, and rarely, it can involve multiple cranial nerves. We aimed to study clinical presentations of cranial nerve involvement in herpes zoster infection. We included patients who had the diagnosis of herpes zoster infection and cranial nerve involvement. The diagnosis was confirmed by typical vesicles and a rash. We excluded patients who had cranial neuralgias or neuropathies but without typical skin lesions (zoster sine herpete or post-herpetic neuralgia). We included 330 patients (mean age, 55.0 ± 17.0 years) who had herpes zoster with cranial nerve involvement, including 155 men and 175 women. Most frequently involved cranial nerves were the trigeminal nerve (57.9%), facial nerve (52.1%), and vestibulocochlear nerve (20.0%). Other involved cranial nerves included the glossopharyngeal nerve (0.9%), vagus nerve (0.9%), oculomotor nerve, trochlear nerve, and abducens nerve (each 0.3%, respectively). One hundred and seventy patients (51.5%) had only sensory symptoms/signs; in contrast, 160 patients (48.5%) had both sensory and motor symptoms/signs. Of those 160 patients, sensory preceded motor symptoms/signs in 64 patients (40.0%), sensory and motor symptoms/signs occurred simultaneously in 38 patients (23.8%), and motor preceded sensory symptoms/signs in 20 patients (12.5%). At one month after herpes zoster infection, vesicles and rash disappeared in 92.6% of patients; meanwhile facial palsy showed a significant improvement in 81.4% of patients (p < 0.05). Cranial motor neuropathies are not infrequent in herpes zoster infections. Multiple cranial nerve involvement frequently occurred in Ramsay Hunt syndrome. We found a significantly increased seasonal occurrence of cranial nerve zoster in spring rather than summer. Cranial motor nerves were affected while the hosts sometimes had a compromised immune system. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

11 pages, 1440 KiB  
Article
Evaluation of microRNA Expression in Patients with Herpes Zoster
by Xihan Li, Ying Huang, Yucheng Zhang and Na He
Viruses 2016, 8(12), 326; https://doi.org/10.3390/v8120326 - 2 Dec 2016
Cited by 13 | Viewed by 5315
Abstract
Reactivated varicella-zoster virus (VZV), which lies latent in the dorsal root ganglions and cranial nerves before its reactivation, is capable of causing herpes zoster (HZ), but the specific mechanism of virus reactivation and latency remains unknown. It was proposed that circulating microRNAs (miRNAs) [...] Read more.
Reactivated varicella-zoster virus (VZV), which lies latent in the dorsal root ganglions and cranial nerves before its reactivation, is capable of causing herpes zoster (HZ), but the specific mechanism of virus reactivation and latency remains unknown. It was proposed that circulating microRNAs (miRNAs) in body fluids could potentially indicate infection. However, the connection between herpes zoster and circulating miRNAs has not been demonstrated. In this study, 41 HZ patients without superinfection were selected. The serum miRNA levels were analyzed by TaqMan low density array (TLDA) and confirmed individually by quantitative reverse transcription PCR (RT-qPCR) analysis. Thirty-five age-matched subjects without any infectious diseases or inflammation were selected as controls. The results showed that the serum miRNA expression profiles in 41 HZ patients were different from those of control subjects. Specifically, 18 miRNAs were up-regulated and 126 were down-regulated more than two-fold in HZ patients compared with controls. The subsequent confirmation of these results by qRT-PCR, as well as receiver operating characteristic (ROC) curve analysis, revealed that six kinds of miRNAs, including miR-190b, miR-571, miR-1276, miR-1303, miR-943, and miR-661, exhibited statistically significant enhanced expression levels (more than four-fold) in HZ patients, compared with those of healthy controls and herpes simplex virus (HSV) patients. Subsequently, it is proposed that these circulating miRNAs are capable of regulating numerous pathways and some may even participate in the inflammatory response or nervous system activity. This study has initially demonstrated that the serum miRNA expression profiles in HZ patients were different from those of uninfected individuals. Additionally, these findings also suggest that six of the altered miRNA could be potentially used as biomarkers to test for latent HZ infection. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop