The Hormonal Background of Hair Loss in Non-Scarring Alopecias
Abstract
:1. Introduction
2. Androgens
3. Estrogens
4. ACTH, CRH, and Cortisol
5. Thyroid Hormones
5.1. Autoimmune Thyroid Disorders
5.2. Hypothyroidism and Hyperthyroidism
5.3. Hair Changes Associated with Thyroid Malignancies
6. Growth Hormone (GH)
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Santos, Z.; Avci, P.; Hamblin, M.R. Drug Discovery for Alopecia: Gone Today, Hair Tomorrow. Expert Opin. Drug Discov. 2015, 10, 269–292. [Google Scholar] [CrossRef]
- Aukerman, E.L.; Jafferany, M. The Psychological Consequences of Androgenetic Alopecia: A Systematic Review. J. Cosmet. Dermatol. 2023, 22, 89–95. [Google Scholar] [CrossRef]
- Monselise, A.; Bar-On, R.; Chan, L.; Leibushor, N.; McElwee, K.; Shapiro, J. Examining the Relationship between Alopecia Areata, Androgenetic Alopecia, and Emotional Intelligence. J. Cutan. Med. Surg. 2013, 17, 46–51. [Google Scholar] [CrossRef]
- Dhami, L. Psychology of Hair Loss Patients and Importance of Counseling. Indian J. Plast. Surg. 2021, 54, 411–415. [Google Scholar] [CrossRef]
- Russo, P.M.; Fino, E.; Mancini, C.; Mazzetti, M.; Starace, M.; Piraccini, B.M. HrQoL in Hair Loss-Affected Patients with Alopecia Areata, Androgenetic Alopecia and Telogen Effluvium: The Role of Personality Traits and Psychosocial Anxiety. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 608–611. [Google Scholar] [CrossRef]
- Sinclair, R.D. Alopecia Areata and Suicide of Children. Med. J. Aust. 2014, 200, 145. [Google Scholar] [CrossRef] [PubMed]
- Shoib, S.; Ahmad, J.; Rashid, A.; Shah, H.; Mushtaq, R.; Malik, M. Psychiatric Aspects in Endocrinolgical Disorders: Identifying Depressive and Anxiety in Endocrine Patients Attending Outpatient Department—A Study from General Hospital in Kashmir (India). Br. J. Med. Pract. 2016, 9, a926. [Google Scholar]
- Hoover, E.; Alhajj, M.; Flores, J.L. Physiology, Hair. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Guarrera, M.; Rebora, A. Exogen Hairs in Women with and without Hair Loss. Ski. Appendage Disord 2017, 3, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Wall, D.; Meah, N.; Fagan, N.; York, K.; Sinclair, R. Advances in Hair Growth. Fac. Rev. 2022, 11, 1. [Google Scholar] [CrossRef] [PubMed]
- Grymowicz, M.; Rudnicka, E.; Podfigurna, A.; Napierala, P.; Smolarczyk, R.; Smolarczyk, K.; Meczekalski, B. Hormonal Effects on Hair Follicles. Int. J. Mol. Sci. 2020, 21, E5342. [Google Scholar] [CrossRef] [PubMed]
- Ntshingila, S.; Oputu, O.; Arowolo, A.T.; Khumalo, N.P. Androgenetic Alopecia: An Update. JAAD Int. 2023, 13, 150–158. [Google Scholar] [CrossRef]
- Natarelli, N.; Gahoonia, N.; Sivamani, R.K. Integrative and Mechanistic Approach to the Hair Growth Cycle and Hair Loss. J. Clin. Med. 2023, 12, 893. [Google Scholar] [CrossRef]
- Gentile, P.; Garcovich, S. Advances in Regenerative Stem Cell Therapy in Androgenic Alopecia and Hair Loss: Wnt Pathway, Growth-Factor, and Mesenchymal Stem Cell Signaling Impact Analysis on Cell Growth and Hair Follicle Development. Cells 2019, 8, 466. [Google Scholar] [CrossRef] [PubMed]
- Alessandrini, A.; Bruni, F.; Piraccini, B.M.; Starace, M. Common Causes of Hair Loss—Clinical Manifestations, Trichoscopy and Therapy. J. Eur. Acad. Dermatol. Venereol. 2021, 35, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Hasan, R.; Juma, H.; Eid, F.A.; Alaswad, H.A.; Ali, W.M.; Aladraj, F.J. Effects of Hormones and Endocrine Disorders on Hair Growth. Cureus 2022, 14, e32726. [Google Scholar] [CrossRef] [PubMed]
- Mason, K.A.; Schoelwer, M.J.; Rogol, A.D. Androgens During Infancy, Childhood, and Adolescence: Physiology and Use in Clinical Practice. Endocr. Rev. 2020, 41, bnaa003. [Google Scholar] [CrossRef]
- Alemany, M. The Roles of Androgens in Humans: Biology, Metabolic Regulation and Health. Int. J. Mol. Sci. 2022, 23, 11952. [Google Scholar] [CrossRef] [PubMed]
- Bienenfeld, A.; Azarchi, S.; Lo Sicco, K.; Marchbein, S.; Shapiro, J.; Nagler, A.R. Androgens in Women: Androgen-Mediated Skin Disease and Patient Evaluation. J. Am. Acad. Dermatol. 2019, 80, 1497–1506. [Google Scholar] [CrossRef] [PubMed]
- Swerdloff, R.S.; Dudley, R.E.; Page, S.T.; Wang, C.; Salameh, W.A. Dihydrotestosterone: Biochemistry, Physiology, and Clinical Implications of Elevated Blood Levels. Endocr. Rev. 2017, 38, 220–254. [Google Scholar] [CrossRef] [PubMed]
- Dhariwala, M.Y.; Ravikumar, P. An Overview of Herbal Alternatives in Androgenetic Alopecia. J. Cosmet. Dermatol. 2019, 18, 966–975. [Google Scholar] [CrossRef]
- Tai, T.; Kochhar, A. Physiology and Medical Treatments for Alopecia. Facial Plast. Surg. Clin. N. Am. 2020, 28, 149–159. [Google Scholar] [CrossRef]
- Devjani, S.; Ezemma, O.; Kelley, K.J.; Stratton, E.; Senna, M. Androgenetic Alopecia: Therapy Update. Drugs 2023, 83, 701–715. [Google Scholar] [CrossRef]
- Starace, M.; Orlando, G.; Alessandrini, A.; Piraccini, B.M. Female Androgenetic Alopecia: An Update on Diagnosis and Management. Am. J. Clin. Dermatol. 2020, 21, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Sadgrove, N.; Batra, S.; Barreto, D.; Rapaport, J. An Updated Etiology of Hair Loss and the New Cosmeceutical Paradigm in Therapy: Clearing ‘the Big Eight Strikes’. Cosmetics 2023, 10, 106. [Google Scholar] [CrossRef]
- Nestor, M.S.; Ablon, G.; Gade, A.; Han, H.; Fischer, D.L. Treatment Options for Androgenetic Alopecia: Efficacy, Side Effects, Compliance, Financial Considerations, and Ethics. J. Cosmet. Dermatol. 2021, 20, 3759–3781. [Google Scholar] [CrossRef] [PubMed]
- Heijboer, A.C.; Hannema, S.E. Androgen Excess and Deficiency: Analytical and Diagnostic Approaches. Clin. Chem. 2023, 69, 1361–1373. [Google Scholar] [CrossRef] [PubMed]
- Müller Ramos, P.; Melo, D.F.; Radwanski, H.; de Almeida, R.F.C.; Miot, H.A. Female-Pattern Hair Loss: Therapeutic Update. Bras. Dermatol. 2023, 98, 506–519. [Google Scholar] [CrossRef] [PubMed]
- Cussen, L.; McDonnell, T.; Bennett, G.; Thompson, C.J.; Sherlock, M.; O’Reilly, M.W. Approach to Androgen Excess in Women: Clinical and Biochemical Insights. Clin. Endocrinol. 2022, 97, 174–186. [Google Scholar] [CrossRef] [PubMed]
- Papadakis, G.; Kandaraki, E.A.; Tseniklidi, E.; Papalou, O.; Diamanti-Kandarakis, E. Polycystic Ovary Syndrome and NC-CAH: Distinct Characteristics and Common Findings. A Systematic Review. Front. Endocrinol. 2019, 10, 388. [Google Scholar] [CrossRef]
- Abusailik, M.A.; Muhanna, A.M.; Almuhisen, A.A.; Alhasanat, A.M.; Alshamaseen, A.M.; Bani Mustafa, S.M.; Nawaiseh, M.B. Cutaneous Manifestation of Polycystic Ovary Syndrome. Dermatol. Rep. 2021, 13, 8799. [Google Scholar] [CrossRef]
- O’Reilly, M.W.; Taylor, A.E.; Crabtree, N.J.; Hughes, B.A.; Capper, F.; Crowley, R.K.; Stewart, P.M.; Tomlinson, J.W.; Arlt, W. Hyperandrogenemia Predicts Metabolic Phenotype in Polycystic Ovary Syndrome: The Utility of Serum Androstenedione. J. Clin. Endocrinol. Metab. 2014, 99, 1027–1036. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Tao, Q.; Zhu, Q.; Zhu, J.; Du, X. Association Between Trichoscopic Features and Serum Hormone Levels and Vitamin D Concentration in Patients with Androgenetic Alopecia in Eastern China: A Cross-Sectional Study. Clin. Cosmet. Investig. Dermatol. 2023, 16, 2547–2555. [Google Scholar] [CrossRef] [PubMed]
- Cannarella, R.; Condorelli, R.A.; Dall’Oglio, F.; La Vignera, S.; Mongioì, L.M.; Micali, G.; Calogero, A.E. Increased DHEAS and Decreased Total Testosterone Serum Levels in a Subset of Men with Early-Onset Androgenetic Alopecia: Does a Male PCOS-Equivalent Exist? Int. J. Endocrinol. 2020, 2020, 1942126. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, J.B. Patterned Loss of Hair in Man; Types and Incidence. Ann. N. Y. Acad. Sci. 1951, 53, 708–728. [Google Scholar] [CrossRef]
- Norwood, O.T. Male Pattern Baldness: Classification and Incidence. South Med. J. 1975, 68, 1359–1365. [Google Scholar] [CrossRef]
- Stárka, L.; Dušková, M. Remarks on the Hormonal Background of the Male Equivalent of Polycystic Ovary Syndrome. Prague Med. Rep. 2021, 122, 73–79. [Google Scholar] [CrossRef]
- Di Guardo, F.; Ciotta, L.; Monteleone, M.; Palumbo, M. Male Equivalent Polycystic Ovarian Syndrome: Hormonal, Metabolic, and Clinical Aspects. Int. J. Fertil. Steril. 2020, 14, 79–83. [Google Scholar] [CrossRef]
- York, K.; Meah, N.; Bhoyrul, B.; Sinclair, R. A Review of the Treatment of Male Pattern Hair Loss. Expert Opin. Pharmacother. 2020, 21, 603–612. [Google Scholar] [CrossRef]
- Nobari, N.N.; Roohaninasab, M.; Sadeghzadeh-Bazargan, A.; Goodarzi, A.; Behrangi, E.; Nikkhah, F.; Ghassemi, M. A Systematic Review of Clinical Trials Using Single or Combination Therapy of Oral or Topical Finasteride for Women in Reproductive Age and Postmenopausal Women with Hormonal and Nonhormonal Androgenetic Alopecia. Adv. Clin. Exp. Med. 2023, 32, 813–823. [Google Scholar] [CrossRef]
- Carmina, E.; Azziz, R.; Bergfeld, W.; Escobar-Morreale, H.F.; Futterweit, W.; Huddleston, H.; Lobo, R.; Olsen, E. Female Pattern Hair Loss and Androgen Excess: A Report From the Multidisciplinary Androgen Excess and PCOS Committee. J. Clin. Endocrinol. Metab. 2019, 104, 2875–2891. [Google Scholar] [CrossRef]
- Gupta, A.K.; Venkataraman, M.; Talukder, M.; Bamimore, M.A. Relative Efficacy of Minoxidil and the 5-α Reductase Inhibitors in Androgenetic Alopecia Treatment of Male Patients: A Network Meta-Analysis. JAMA Dermatol. 2022, 158, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Azarchi, S.; Bienenfeld, A.; Lo Sicco, K.; Marchbein, S.; Shapiro, J.; Nagler, A.R. Androgens in Women: Hormone-Modulating Therapies for Skin Disease. J. Am. Acad. Dermatol. 2019, 80, 1509–1521. [Google Scholar] [CrossRef] [PubMed]
- Deoghare, S.; Sadick, N.S. Combination Therapy in Female Pattern Hair Loss. J. Cosmet. Laser Ther. 2023, 25, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Aguilar Medina, D.A.; Cazarín, J.; Magaña, M. Spironolactone in Dermatology. Dermatol. Ther. 2022, 35, e15321. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Du, Y.; Bi, L.; Lin, X.; Zhao, M.; Fan, W. The Efficacy and Safety of Oral and Topical Spironolactone in Androgenetic Alopecia Treatment: A Systematic Review. Clin. Cosmet. Investig. Dermatol. 2023, 16, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Aleissa, M. The Efficacy and Safety of Oral Spironolactone in the Treatment of Female Pattern Hair Loss: A Systematic Review and Meta-Analysis. Cureus 2023, 15, e43559. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, R.D.M.; Santos, L.D.N.; Ramos, P.M.; Machado, C.J.; Acioly, P.; Frattini, S.C.; Barcaui, C.B.; Donda, A.L.V.; Melo, D.F. Bicalutamide and the New Perspectives for Female Pattern Hair Loss Treatment: What Dermatologists Should Know. J. Cosmet. Dermatol. 2022, 21, 4171–4175. [Google Scholar] [CrossRef]
- Fernandez-Nieto, D.; Saceda-Corralo, D.; Jimenez-Cauhe, J.; Moreno-Arrones, O.M.; Rodrigues-Barata, R.; Hermosa-Gelbard, A.; Vano-Galvan, S. Bicalutamide: A Potential New Oral Antiandrogenic Drug for Female Pattern Hair Loss. J. Am. Acad. Dermatol. 2020, 83, e355–e356. [Google Scholar] [CrossRef]
- Ismail, F.F.; Meah, N.; Trindade de Carvalho, L.; Bhoyrul, B.; Wall, D.; Sinclair, R. Safety of Oral Bicalutamide in Female Pattern Hair Loss: A Retrospective Review of 316 Patients. J. Am. Acad. Dermatol. 2020, 83, 1478–1479. [Google Scholar] [CrossRef]
- Cho, Y.H.; Lee, S.Y.; Jeong, D.W.; Choi, E.J.; Kim, Y.J.; Lee, J.G.; Yi, Y.H.; Cha, H.S. Effect of Pumpkin Seed Oil on Hair Growth in Men with Androgenetic Alopecia: A Randomized, Double-Blind, Placebo-Controlled Trial. Evid. Based Complement. Alternat. Med. 2014, 2014, 549721. [Google Scholar] [CrossRef]
- Ezekwe, N.; King, M.; Hollinger, J.C. The Use of Natural Ingredients in the Treatment of Alopecias with an Emphasis on Central Centrifugal Cicatricial Alopecia: A Systematic Review. J. Clin. Aesthet. Dermatol. 2020, 13, 23–27. [Google Scholar] [PubMed]
- Ibrahim, I.M.; Hasan, M.S.; Elsabaa, K.I.; Elsaie, M.L. Pumpkin Seed Oil vs. Minoxidil 5% Topical Foam for the Treatment of Female Pattern Hair Loss: A Randomized Comparative Trial. J. Cosmet. Dermatol. 2021, 20, 2867–2873. [Google Scholar] [CrossRef] [PubMed]
- Ufomadu, P. Complementary and Alternative Supplements: A Review of Dermatologic Effectiveness for Androgenetic Alopecia. Bayl. Univ. Med. Cent. Proc. 2024, 37, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Mirmirani, P. Hormonal Changes in Menopause: Do They Contribute to a “midlife Hair Crisis” in Women? Br. J. Dermatol. 2011, 165 (Suppl. 3), 7–11. [Google Scholar] [CrossRef] [PubMed]
- Zouboulis, C.C.; Blume-Peytavi, U.; Kosmadaki, M.; Roó, E.; Vexiau-Robert, D.; Kerob, D.; Goldstein, S.R. Skin, Hair and beyond: The Impact of Menopause. Climacteric 2022, 25, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Minkin, M.J. Menopause: Hormones, Lifestyle, and Optimizing Aging. Obs. Gynecol. Clin. N. Am. 2019, 46, 501–514. [Google Scholar] [CrossRef] [PubMed]
- Lambrinoudaki, I.; Paschou, S.A.; Lumsden, M.A.; Faubion, S.; Makrakis, E.; Kalantaridou, S.; Panay, N. Premature Ovarian Insufficiency: A Toolkit for the Primary Care Physician. Maturitas 2021, 147, 53–63. [Google Scholar] [CrossRef]
- Richard-Eaglin, A. Male and Female Hypogonadism. Nurs. Clin. N. Am. 2018, 53, 395–405. [Google Scholar] [CrossRef]
- Randall, V.A. Androgens and Hair Growth. Dermatol. Ther. 2008, 21, 314–328. [Google Scholar] [CrossRef]
- Kamp, E.; Ashraf, M.; Musbahi, E.; DeGiovanni, C. Menopause, Skin and Common Dermatoses. Part 1: Hair Disorders. Clin. Exp. Dermatol. 2022, 47, 2110–2116. [Google Scholar] [CrossRef]
- Li, R.; Shen, Y. Estrogen and Brain: Synthesis, Function and Diseases. Front. Biosci. 2005, 10, 257–267. [Google Scholar] [CrossRef]
- Price, V.H. Androgenetic Alopecia in Women. J. Investig. Dermatol. Symp. Proc. 2003, 8, 24–27. [Google Scholar] [CrossRef]
- Rinaldi, F.; Trink, A.; Mondadori, G.; Giuliani, G.; Pinto, D. The Menopausal Transition: Is the Hair Follicle “Going through Menopause”? Biomedicines 2023, 11, 3041. [Google Scholar] [CrossRef]
- Riedel-Baima, B.; Riedel, A. Female Pattern Hair Loss May Be Triggered by Low Oestrogen to Androgen Ratio. Endocr. Regul. 2008, 42, 13–16. [Google Scholar]
- Desai, K.; Almeida, B.; Miteva, M. Understanding Hormonal Therapies: Overview for the Dermatologist Focused on Hair. Dermatology 2021, 237, 786–791. [Google Scholar] [CrossRef] [PubMed]
- Endo, Y.; Obayashi, Y.; Murakoshi, M.; Saito, J.; Ueki, R. Clinical and Phototrichogrammatic Evaluation of Estradiol Replacement Therapy on Hair Growth in Postmenopausal Japanese Women with Female Pattern Hair Loss: A Pilot Study. Int. J. Womens Dermatol. 2023, 9, e109. [Google Scholar] [CrossRef]
- Katsura, C.; Ogunmwonyi, I.; Kankam, H.K.; Saha, S. Breast Cancer: Presentation, Investigation and Management. Br. J. Hosp. Med. 2022, 83, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Pistilli, B.; Lohrisch, C.; Sheade, J.; Fleming, G.F. Personalizing Adjuvant Endocrine Therapy for Early-Stage Hormone Receptor-Positive Breast Cancer. In American Society of Clinical Oncology Educational Book; ASCO: Alexandria, VA, USA, 2022; Volume 42, p. 60. [Google Scholar] [CrossRef]
- Rossi, A.; Caro, G.; Magri, F.; Fortuna, M.C.; Carlesimo, M. Clinical Aspect, Pathogenesis and Therapy Options of Alopecia Induced by Hormonal Therapy for Breast Cancer. Explor. Target. Antitumor Ther. 2021, 2, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Rozner, R.N.; Freites-Martinez, A.; Shapiro, J.; Geer, E.B.; Goldfarb, S.; Lacouture, M.E. Safety of 5α-Reductase Inhibitors and Spironolactone in Breast Cancer Patients Receiving Endocrine Therapies. Breast Cancer Res. Treat. 2019, 174, 15–26. [Google Scholar] [CrossRef]
- Czech, T.; Sugihara, S.; Nishimura, Y. Characteristics of Hair Loss after COVID-19: A Systematic Scoping Review. J. Cosmet. Dermatol. 2022, 21, 3655–3662. [Google Scholar] [CrossRef]
- Lee, E.Y.; Nam, Y.J.; Kang, S.; Choi, E.J.; Han, I.; Kim, J.; Kim, D.H.; An, J.H.; Lee, S.; Lee, M.H.; et al. The Local Hypothalamic-Pituitary-Adrenal Axis in Cultured Human Dermal Papilla Cells. BMC Mol. Cell Biol. 2020, 21, 42. [Google Scholar] [CrossRef]
- Pondeljak, N.; Lugović-Mihić, L. Stress-Induced Interaction of Skin Immune Cells, Hormones, and Neurotransmitters. Clin. Ther. 2020, 42, 757–770. [Google Scholar] [CrossRef]
- Kalner, S.; Vergilis, I. Reversal of Stress-Associated Alopecia. J. Drugs Dermatol. 2023, 22, 300–301. [Google Scholar] [CrossRef]
- Millington, G.W.M.; Palmer, H.E. Proopiomelanocortin (POMC) and Psychodermatology. Ski. Health Dis. 2023, 3, e201. [Google Scholar] [CrossRef]
- Maloh, J.; Engel, T.; Natarelli, N.; Nong, Y.; Zufall, A.; Sivamani, R.K. Systematic Review of Psychological Interventions for Quality of Life, Mental Health, and Hair Growth in Alopecia Areata and Scarring Alopecia. J. Clin. Med. 2023, 12, 964. [Google Scholar] [CrossRef]
- Kageyama, K.; Iwasaki, Y.; Daimon, M. Hypothalamic Regulation of Corticotropin-Releasing Factor under Stress and Stress Resilience. Int. J. Mol. Sci. 2021, 22, 12242. [Google Scholar] [CrossRef]
- Ahn, D.; Kim, H.; Lee, B.; Hahm, D.-H. Psychological Stress-Induced Pathogenesis of Alopecia Areata: Autoimmune and Apoptotic Pathways. Int. J. Mol. Sci. 2023, 24, 11711. [Google Scholar] [CrossRef]
- Acharya, P.; Mathur, M.C. Oxidative Stress in Alopecia Areata: A Systematic Review and Meta-Analysis. Int. J. Dermatol. 2020, 59, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Cho, D.H.; Kim, H.J.; Lee, J.Y.; Cho, B.K.; Park, H.J. Immunoreactivity of Corticotropin-Releasing Hormone, Adrenocorticotropic Hormone and Alpha-Melanocyte-Stimulating Hormone in Alopecia Areata. Exp. Dermatol. 2006, 15, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Bertolini, M.; McElwee, K.; Gilhar, A.; Bulfone-Paus, S.; Paus, R. Hair Follicle Immune Privilege and Its Collapse in Alopecia Areata. Exp. Dermatol. 2020, 29, 703–725. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Pi, L.-Q.; Park, Y.-L.; Whang, K.-U.; Jeon, S.-Y.; Lee, W.-S. The Effect of Proopiomelanocortin-Derived Peptides on the Immune System of Human Hair Follicles. J. Dermatol. Sci. 2009, 55, 195–197. [Google Scholar] [CrossRef]
- Cuellar-Barboza, A.; Cardenas-de la Garza, J.A.; Cruz-Gómez, L.G.; Barboza-Quintana, O.; Flores-Gutiérrez, J.P.; Gómez-Flores, M.; Welsh, O.; Ocampo-Candiani, J.; Herz-Ruelas, M.E. Local Secretion of Stress Hormones Increases in Alopecia Areata Lesions after Treatment with UVA-1 Phototherapy. Exp. Dermatol. 2020, 29, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Fischer, T.W.; Bergmann, A.; Kruse, N.; Kleszczynski, K.; Skobowiat, C.; Slominski, A.T.; Paus, R. New Effects of Caffeine on Corticotropin-Releasing Hormone (CRH)-Induced Stress along the Intrafollicular Classical Hypothalamic-Pituitary-Adrenal (HPA) Axis (CRH-R1/2, IP3 -R, ACTH, MC-R2) and the Neurogenic Non-HPA Axis (Substance P, p75NTR and TrkA) in Ex Vivo Human Male Androgenetic Scalp Hair Follicles. Br. J. Dermatol. 2021, 184, 96–110. [Google Scholar] [CrossRef] [PubMed]
- Thom, E. Stress and the Hair Growth Cycle: Cortisol-Induced Hair Growth Disruption. J. Drugs Dermatol. 2016, 15, 1001–1004. [Google Scholar] [PubMed]
- Schmidt, J.B. Hormonal Basis of Male and Female Androgenic Alopecia: Clinical Relevance. Ski. Pharmacol. 1994, 7, 61–66. [Google Scholar] [CrossRef] [PubMed]
- El-Garf, A.; Mohie, M.; Salah, E. Trichogenic Effect of Topical Ketoconazole versus Minoxidil 2% in Female Pattern Hair Loss: A Clinical and Trichoscopic Evaluation. Biomed. Dermatol. 2019, 3, 8. [Google Scholar] [CrossRef]
- Fields, J.R.; Vonu, P.M.; Monir, R.L.; Schoch, J.J. Topical Ketoconazole for the Treatment of Androgenetic Alopecia: A Systematic Review. Dermatol. Ther. 2020, 33, e13202. [Google Scholar] [CrossRef]
- Sinawe, H.; Casadesus, D. Ketoconazole. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Choi, F.D.; Juhasz, M.L.W.; Atanaskova Mesinkovska, N. Topical Ketoconazole: A Systematic Review of Current Dermatological Applications and Future Developments. J. Dermatol. Treat. 2019, 30, 760–771. [Google Scholar] [CrossRef]
- Marks, D.H.; Prasad, S.; De Souza, B.; Burns, L.J.; Senna, M.M. Topical Antiandrogen Therapies for Androgenetic Alopecia and Acne Vulgaris. Am. J. Clin. Dermatol. 2020, 21, 245–254. [Google Scholar] [CrossRef]
- Gupta, A.K.; Carviel, J.L.; Foley, K.A.; Shear, N.H.; Piraccini, B.M.; Piguet, V.; Tosti, A. Monotherapy for Alopecia Areata: A Systematic Review and Network Meta-Analysis. Ski. Appendage Disord 2019, 5, 331–337. [Google Scholar] [CrossRef]
- Fukumoto, T.; Fukumoto, R.; Magno, E.; Oka, M.; Nishigori, C.; Horita, N. Treatments for Alopecia Areata: A Systematic Review and Network Meta-Analysis. Dermatol. Ther. 2021, 34, e14916. [Google Scholar] [CrossRef] [PubMed]
- Lai, V.W.Y.; Chen, G.; Gin, D.; Sinclair, R. Systemic Treatments for Alopecia Areata: A Systematic Review. Australas J. Dermatol. 2019, 60, e1–e13. [Google Scholar] [CrossRef]
- Barton, V.R.; Toussi, A.; Awasthi, S.; Kiuru, M. Treatment of Pediatric Alopecia Areata: A Systematic Review. J. Am. Acad. Dermatol. 2022, 86, 1318–1334. [Google Scholar] [CrossRef] [PubMed]
- Gallaga, N.M.; Carrillo, B.; Good, A.; Munoz-Gonzalez, A.; Ross, L. Pediatric Pulse Dose Corticosteroid Therapy Dosing and Administration in the Treatment of Alopecia Areata: A Review of Literature. Pediatr. Dermatol. 2023, 40, 276–281. [Google Scholar] [CrossRef]
- Cieszyński, Ł.; Jendrzejewski, J.; Wiśniewski, P.; Owczarzak, A.; Sworczak, K. Hair Cortisol Concentration in a Population without Hypothalamic-Pituitary-Adrenal Axis Disorders. Adv. Clin. Exp. Med. 2019, 28, 369–373. [Google Scholar] [CrossRef] [PubMed]
- Nijakowski, K.; Owecki, W.; Jankowski, J.; Surdacka, A. Salivary Biomarkers for Alzheimer’s Disease: A Systematic Review with Meta-Analysis. Int. J. Mol. Sci. 2024, 25, 1168. [Google Scholar] [CrossRef]
- Hussein, R.S.; Atia, T.; Bin Dayel, S. Impact of Thyroid Dysfunction on Hair Disorders. Cureus 2023, 15, e43266. [Google Scholar] [CrossRef]
- van Beek, N.; Bodó, E.; Kromminga, A.; Gáspár, E.; Meyer, K.; Zmijewski, M.A.; Slominski, A.; Wenzel, B.E.; Paus, R. Thyroid Hormones Directly Alter Human Hair Follicle Functions: Anagen Prolongation and Stimulation of Both Hair Matrix Keratinocyte Proliferation and Hair Pigmentation. J. Clin. Endocrinol. Metab. 2008, 93, 4381–4388. [Google Scholar] [CrossRef]
- Popa, A.; Carsote, M.; Cretoiu, D.; Dumitrascu, M.C.; Nistor, C.-E.; Sandru, F. Study of the Thyroid Profile of Patients with Alopecia. J. Clin. Med. 2023, 12, 1115. [Google Scholar] [CrossRef]
- Bin Dayel, S.; Hussein, R.S.; Atia, T.; Abahussein, O.; Al Yahya, R.S.; Elsayed, S.H. Is Thyroid Dysfunction a Common Cause of Telogen Effluvium?: A Retrospective Study. Medicine 2024, 103, e36803. [Google Scholar] [CrossRef]
- Carmona-Rodríguez, M.; Moro-Bolado, F.; Romero-Aguilera, G.; Ruiz-Villaverde, R.; Carriel, V. Frontal Fibrosing Alopecia: An Observational Single-Center Study of 306 Cases. Life 2023, 13, 1344. [Google Scholar] [CrossRef] [PubMed]
- Jonklaas, J.; Bianco, A.C.; Bauer, A.J.; Burman, K.D.; Cappola, A.R.; Celi, F.S.; Cooper, D.S.; Kim, B.W.; Peeters, R.P.; Rosenthal, M.S.; et al. Guidelines for the Treatment of Hypothyroidism: Prepared by the American Thyroid Association Task Force on Thyroid Hormone Replacement. Thyroid 2014, 24, 1670–1751. [Google Scholar] [CrossRef] [PubMed]
- Cohen, B.; Cadesky, A.; Jaggi, S. Dermatologic Manifestations of Thyroid Disease: A Literature Review. Front. Endocrinol. 2023, 14, 1167890. [Google Scholar] [CrossRef]
- Deo, K.; Sharma, Y.K.; Wadhokar, M.; Tyagi, N. Clinicoepidemiological Observational Study of Acquired Alopecias in Females Correlating with Anemia and Thyroid Function. Dermatol. Res. Pr. 2016, 2016, 6279108. [Google Scholar] [CrossRef] [PubMed]
- Mazhar, M.W.; Mehmood, J.; Saif, S.; Iftikhar, H.; Khan, U.; Sikandar, M.; Manan, A.; Irfan, M.; Saleem, T.; Mumtaz, M. Thyroidism Effect on Alopecia Patients in Pakistan. Asian J. Adv. Med. Sci. 2021, 1, 302–305. [Google Scholar] [CrossRef]
- Horesh, E.J.; Chéret, J.; Paus, R. Growth Hormone and the Human Hair Follicle. Int. J. Mol. Sci. 2021, 22, 13205. [Google Scholar] [CrossRef]
- Lurie, R.; Ben-Amitai, D.; Laron, Z. Laron Syndrome (Primary Growth Hormone Insensitivity): A Unique Model to Explore the Effect of Insulin-like Growth Factor 1 Deficiency on Human Hair. Dermatology 2004, 208, 314–318. [Google Scholar] [CrossRef]
- Kanaka-Gantenbein, C.; Kogia, C.; Abdel-Naser, M.B.; Chrousos, G.P. Skin Manifestations of Growth Hormone-Induced Diseases. Rev. Endocr. Metab. Disord 2016, 17, 259–267. [Google Scholar] [CrossRef]
- Yamada, S.; Fukuhara, N.; Nishioka, H.; Yamaguchi-Okada, M.; Takeshita, A.; Takeuchi, Y. Scalp Hair Loss after Transsphenoidal Adenomectomy in Patients with Acromegaly. Clin. Endocrinol. 2013, 79, 386–393. [Google Scholar] [CrossRef]
- Aguiar-Oliveira, M.H.; Salvatori, R. Disruption of the GHRH Receptor and Its Impact on Children and Adults: The Itabaianinha Syndrome. Rev. Endocr. Metab. Disord 2021, 22, 81–89. [Google Scholar] [CrossRef]
Hormone | Hormone Level | Possible Endocrine Disorder | Type of Alopecia |
---|---|---|---|
Androgens | |||
T DHT A4 DHEA DHEAS | increased | androgen excess
|
|
SHBG | decreased | ||
FAI ** | increased | ||
Estrogens | |||
E2 | decreased | menopause |
|
Stress hormones | |||
CRH | increased | chronic stress |
|
ACTH | increased/decreased *** | Cushing disease |
|
Cortisol | increased | ||
Thyroid hormones | |||
T3 T4 | decreased/increased | hypothyroidism/hyperthyroidism |
|
Others | |||
GH | decreased | GH deficiency
|
|
Medication | Mechanism of Action | Route of Administration | Dose | Indication |
---|---|---|---|---|
Finasteride | 5α-reductase type II inhibitor | oral | 1 mg daily | Androgenetic alopecia |
topical | 0.25% solution (1 mL twice daily) | |||
Dutasteride | 5α-reductase type I and II inhibitor | oral | 0.5 mg daily | |
Spironolactone | AR * antagonist, 17α-hydroxylase inhibitor | oral | 25–200 mg daily | |
topical | 1% gel or 5% solution twice daily | |||
Bicalutamide | AR antagonist | oral | 10–50 mg daily | |
Cyproterone acetate | 5α-reductase inhibitor, AR antagonist, gonadotrophin secretion inhibitor | oral | 50 mg daily | |
Clascoterone | AR antagonist | topical | 1% cream | |
Pyrilutamide | AR antagonist | topical | 0.5% solution (1 mL once/twice daily) | |
Pumpkin seed oil | Herbal 5α-reductase inhibitor | oral | 400 mg daily | |
Estradiol | ER agonist, elevation of sex hormone-binding globulin levels | oral | 1–2 mg daily | menopause, premature ovarian failure |
Levothyroxine | Synthetic version of human thyroxine | oral | 25–200 µg daily | hypothyroidism |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Owecka, B.; Tomaszewska, A.; Dobrzeniecki, K.; Owecki, M. The Hormonal Background of Hair Loss in Non-Scarring Alopecias. Biomedicines 2024, 12, 513. https://doi.org/10.3390/biomedicines12030513
Owecka B, Tomaszewska A, Dobrzeniecki K, Owecki M. The Hormonal Background of Hair Loss in Non-Scarring Alopecias. Biomedicines. 2024; 12(3):513. https://doi.org/10.3390/biomedicines12030513
Chicago/Turabian StyleOwecka, Barbara, Agata Tomaszewska, Krzysztof Dobrzeniecki, and Maciej Owecki. 2024. "The Hormonal Background of Hair Loss in Non-Scarring Alopecias" Biomedicines 12, no. 3: 513. https://doi.org/10.3390/biomedicines12030513