Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = corrugated shell roof units

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5571 KiB  
Article
Transformed Shell Structures Determined by Regular Networks as a Complex Material for Roofing
by Jacek Abramczyk
Materials 2021, 14(13), 3582; https://doi.org/10.3390/ma14133582 - 26 Jun 2021
Cited by 7 | Viewed by 2702
Abstract
The article presents a comprehensive extension of the proprietary basic method for shaping innovative systems of corrugated shell roof structures by means of a specific complex material that comprises regular transformable shell units limited by spatial quadrangles. The units are made up of [...] Read more.
The article presents a comprehensive extension of the proprietary basic method for shaping innovative systems of corrugated shell roof structures by means of a specific complex material that comprises regular transformable shell units limited by spatial quadrangles. The units are made up of nominally plane folded sheets transformed into shell shapes. The similar shell units are regularly and effectively arranged in the three-dimensional space in an orderly manner with a universal regular reference surface, polyhedral network, and polygonal network. The extended method leads to the increase in the variety of the designed complex shell roof forms and plane-walled elevation forms of buildings. For this purpose, the rules governing the creation of the continuous roof shell structures of many shells arranged in different unconventional visually attractive patterns and their discontinuous regular modifications are sought. To obtain several novel groups of similar unconventional parametric roof forms, single division coefficients and double division coefficients are used. The easy and intuitive modifications of the positions of the vertices belonging to the polygonal network on the side edges of the polyhedral network accomplished by means of a parametric algorithm allow one to adjust the geometry of the complete shell units to the geometric and material constraints related to the orthotropic properties of the transformed sheeting by means of these coefficients. The innovative approach to the shaping of the diverse unconventional roof structures requires the solving of many interdisciplinary problems in the field of mathematics, civil engineering, construction, morphology, architecture, mechanics, computer visualization, and programming. Full article
Show Figures

Figure 1

29 pages, 7635 KiB  
Article
Transformed Corrugated Shell Units Used as a Material Determining Unconventional Forms of Complex Building Structures
by Jacek Abramczyk
Materials 2021, 14(9), 2402; https://doi.org/10.3390/ma14092402 - 5 May 2021
Cited by 6 | Viewed by 2422
Abstract
This article is an insight into interdisciplinary topics in the field of civil engineering, morphology, architecture, mechanics, and computer programming. A novel method for shaping unconventional complex roofs in which regular folded units transformed into various shells are used as a complex substitute [...] Read more.
This article is an insight into interdisciplinary topics in the field of civil engineering, morphology, architecture, mechanics, and computer programming. A novel method for shaping unconventional complex roofs in which regular folded units transformed into various shells are used as a complex substitute material is proposed. The original method’s algorithm for building systems of planes defining diversified polyhedral networks in the three-dimensional space by means of division coefficients of the subsequently determined vertices is presented. The algorithm is based on the proportions between the lengths of the edges of the reference network, the location and shape of the ruled shell units included in the designed complex roof structure, so it is intuitive. The shell units are made up of nominally flat folded sheets transformed effectively into shell forms whose static-strength properties are controlled by geometric quantities characteristic of ruled surfaces. The presented original approach to the shaping of the shell roof structures determining specific complex building forms allows us to go beyond the limitations related to the orthotropic structure of the folded roof sheeting and the shape transformations. Full article
Show Figures

Figure 1

Back to TopTop