Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = corky disease

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6449 KiB  
Article
Nondestructive Detection of Corky Disease in Symptomless ‘Akizuki’ Pears via Raman Spectroscopy
by Yue Yang, Weizhi Yang, Hanhan Zhang, Jing Xu, Xiu Jin, Xiaodan Zhang, Zhengfeng Ye, Xiaomei Tang, Lun Liu, Wei Heng, Bing Jia and Li Liu
Sensors 2024, 24(19), 6324; https://doi.org/10.3390/s24196324 - 29 Sep 2024
Cited by 2 | Viewed by 1339
Abstract
‘Akizuki’ pear (Pyrus pyrifolia Nakai) corky disease is a physiological disease that strongly affects the fruit quality of ‘Akizuki’ pear and its economic value. In this study, Raman spectroscopy was employed to develop an early diagnosis model by integrating support vector machine [...] Read more.
‘Akizuki’ pear (Pyrus pyrifolia Nakai) corky disease is a physiological disease that strongly affects the fruit quality of ‘Akizuki’ pear and its economic value. In this study, Raman spectroscopy was employed to develop an early diagnosis model by integrating support vector machine (SVM), random forest (RF), gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), and convolutional neural network (CNN) modeling techniques. The effects of various pretreatment methods and combinations of methods on modeling results were studied. The relative optimal index formula was utilized to identify the SG and SG+WT as the most effective preprocessing methods. Following the optimal preprocessing method, the performance of the majority of the models was markedly enhanced through the process of model reconditioning, among which XGBoost achieved 80% accuracy under SG+WT pretreatment, and F1 and kappa both performed best. The results show that RF, GBDT, and XGBoost are more sensitive to the pretreatment method, whereas SVM and CNN are more dependent on internal parameter tuning. The results of this study indicate that the early detection of Raman spectroscopy represents a novel approach for the nondestructive identification of asymptomatic ‘Akizuki’ pear corky disease, which is of paramount importance for the realization of large-scale detection across orchards. Full article
(This article belongs to the Special Issue Artificial Intelligence and Key Technologies of Smart Agriculture)
Show Figures

Figure 1

16 pages, 1109 KiB  
Article
Rapid and Direct Detection of the Stubby Root Nematode, Paratrichodorus allius, from Soil DNA Extracts Using Recombinase Polymerase Amplification Assay
by Mankanwal Goraya and Guiping Yan
Int. J. Mol. Sci. 2024, 25(19), 10371; https://doi.org/10.3390/ijms251910371 - 26 Sep 2024
Viewed by 1259
Abstract
The stubby root nematode, Paratrichodorus allius, is one of the most important plant-parasitic nematodes. Besides root feeding, P. allius also transmits the Tobacco rattle virus in potatoes, which causes corky ringspot disease. Rapid detection of P. allius is key for efficient management. This [...] Read more.
The stubby root nematode, Paratrichodorus allius, is one of the most important plant-parasitic nematodes. Besides root feeding, P. allius also transmits the Tobacco rattle virus in potatoes, which causes corky ringspot disease. Rapid detection of P. allius is key for efficient management. This study was conducted to develop a real-time recombinase polymerase amplification (RPA) assay that is capable of detecting P. allius directly in DNA extracts from soil using a simple portable device in real time. A fluorophore-attached probe was designed to target the internal transcribed spacer (ITS)-rDNA of P. allius and was used along with primers designed previously. The real-time RPA assay had the ability to detect P. allius DNA extracted directly from infested soil with a sensitivity of one-sixteenth portion of a single nematode. This RPA assay was specific, as it did not produce positive signals from non-target nematodes tested. The real-time RPA was found to be rapid as it could even detect P. allius in as little as 7 min. Testing with 15 field soil samples validated the RPA assay developed in this study. This is the first report of P. allius detection directly from soil DNA using real-time RPA and is the fastest method for P. allius detection in soil to date. Full article
Show Figures

Figure 1

7 pages, 1962 KiB  
Brief Report
Identification of Fusarium solani f. sp. cucurbitae Causing Zucchini Fruit Rot in Inner Mongolia, China
by Yongqing Yang, Zhengnan Li, Hongxia Sun, Caiyuan Jian, Qingping Zhang and Ziqin Li
Horticulturae 2023, 9(9), 1020; https://doi.org/10.3390/horticulturae9091020 - 9 Sep 2023
Cited by 1 | Viewed by 1683
Abstract
Fruit rot is one of the major diseases impacting the production and quality of zucchini (Cucurbita pepo). In August 2021, fruit rot symptoms were observed on the zucchini fruit ‘Jindi 1’ in the Wuyuan region in Inner Mongolia, China with an incidence [...] Read more.
Fruit rot is one of the major diseases impacting the production and quality of zucchini (Cucurbita pepo). In August 2021, fruit rot symptoms were observed on the zucchini fruit ‘Jindi 1’ in the Wuyuan region in Inner Mongolia, China with an incidence ranging from 10% to 30%. Where the pepo was in contact with the soil, dark grey and spongy corky lesions 4–5 cm in diameter with a light brown halo were observed. The internal necrosis of the fruit rind was also recorded. From the affected fruits, fungal colonies belonging to the Fusarium species were exclusively isolated. Molecular analysis of the ITS, TEF-1α, and RPB2 sequences identified the isolates as Fusarium solani f. sp. cucurbitae. Inoculated on ‘Jindi 1’, the strain Fx-1a induced typical fruit rot on the pepo and wilting on seedlings, while negative-controls remained asymptomatic. The impact of this disease on seed quality and yield in zucchini seed production needs to be further studied. Full article
(This article belongs to the Special Issue Horticultural Crop Diseases and Analysis of Resistance Gene)
Show Figures

Figure 1

24 pages, 1433 KiB  
Review
Citrus Canker Pathogen, Its Mechanism of Infection, Eradication, and Impacts
by Esha Shahbaz, Mobeen Ali, Muhammad Shafiq, Muhammad Atiq, Mujahid Hussain, Rashad Mukhtar Balal, Ali Sarkhosh, Fernando Alferez, Saleha Sadiq and Muhammad Adnan Shahid
Plants 2023, 12(1), 123; https://doi.org/10.3390/plants12010123 - 26 Dec 2022
Cited by 35 | Viewed by 8114
Abstract
Citrus canker is a ravaging bacterial disease threatening citrus crops. Its major types are Asiatic Canker, Cancrosis B, and Cancrosis C, caused by Xanthomonas citri pv. citri (Xcc), Xanthomonas citri pv. aurantifolii pathotype-B (XauB), and pathotype-C (XauC), respectively. The bacterium enters its host [...] Read more.
Citrus canker is a ravaging bacterial disease threatening citrus crops. Its major types are Asiatic Canker, Cancrosis B, and Cancrosis C, caused by Xanthomonas citri pv. citri (Xcc), Xanthomonas citri pv. aurantifolii pathotype-B (XauB), and pathotype-C (XauC), respectively. The bacterium enters its host through stomata and wounds, from which it invades the intercellular spaces in the apoplast. It produces erumpent corky necrotic lesions often surrounded by a chlorotic halo on the leaves, young stems, and fruits, which causes dark spots, defoliation, reduced photosynthetic rate, rupture of leaf epidermis, dieback, and premature fruit drop in severe cases. Its main pathogenicity determinant gene is pthA, whose variants are present in all citrus canker-causing pathogens. Countries where citrus canker is not endemic adopt different methods to prevent the introduction of the pathogen into the region, eradicate the pathogen, and minimize its dissemination, whereas endemic regions require an integrated management program to control the disease. The main aim of the present manuscript is to shed light on the pathogen profile, its mechanism of infection, and fruitful strategies for disease management. Although an adequate method to completely eradicate citrus canker has not been introduced so far, many new methods are under research to abate the disease. Full article
(This article belongs to the Special Issue Detection and Diagnostics of Bacterial Plant Pathogens)
Show Figures

Figure 1

17 pages, 6084 KiB  
Article
Nuances of Responses to Two Sources of Grapevine Leafroll Disease on Pinot Noir Grown in the Field for 17 Years
by Jean-Sébastien Reynard, Justine Brodard, Vivian Zufferey, Markus Rienth, Paul Gugerli, Olivier Schumpp and Arnaud G. Blouin
Viruses 2022, 14(6), 1333; https://doi.org/10.3390/v14061333 - 18 Jun 2022
Cited by 5 | Viewed by 3147
Abstract
Grapevine leafroll disease (GLD) is one of the most economically damaging virus diseases in grapevine, with grapevine leafroll-associated virus 1 (GLRaV-1) and grapevine leafroll-associated virus 3 (GLRaV-3) as the main contributors. This study complements a previously published transcriptomic analysis and compared the impact [...] Read more.
Grapevine leafroll disease (GLD) is one of the most economically damaging virus diseases in grapevine, with grapevine leafroll-associated virus 1 (GLRaV-1) and grapevine leafroll-associated virus 3 (GLRaV-3) as the main contributors. This study complements a previously published transcriptomic analysis and compared the impact of two different forms of GLD to a symptomless control treatment: a mildly symptomatic form infected with GLRaV-1 and a severe form with exceptionally early leafroll symptoms (up to six weeks before veraison) infected with GLRaV-1 and GLRaV-3. Vine physiology and fruit composition in 17-year-old Pinot noir vines were measured and a gradient of vigor, yield, and berry quality (sugar content and berry weight) was observed between treatments. Virome composition, confirmed by individual RT-PCR, was compared with biological indexing. Three divergent viromes were recovered, containing between four to seven viruses and two viroids. They included the first detection of grapevine asteroid mosaic-associated virus in Switzerland. This virus did not cause obvious symptoms on the indicators used in biological indexing. Moreover, the presence of grapevine virus B (GVB) did not cause the expected corky bark symptoms on the indicators, thus underlining the important limitations of the biological indexing. Transmission of GLRaV-3 alone or in combination with GVB by Planococcus comstocki mealybug did not reproduce the strong symptoms observed on the donor plant infected with a severe form of GLD. This result raises questions about the contribution of each virus to the symptomatology of the plant. Full article
(This article belongs to the Special Issue Closteroviridae)
Show Figures

Figure 1

16 pages, 868 KiB  
Article
Effect of Horticultural Mineral Oil on Huanglongbing Transmission by Diaphorina citri Kuwayama (Hemiptera: Psyllidae) Population in a Commercial Citrus Orchard in Sarawak, Malaysia, Northern Borneo
by Sui S. Leong, Stephen C. T. Leong and George Andrew Charles Beattie
Insects 2021, 12(9), 772; https://doi.org/10.3390/insects12090772 - 28 Aug 2021
Cited by 5 | Viewed by 2780
Abstract
Diaphorina citri Kuwayama transmits a destructive citrus disease caused by a fastidious bacterium ‘Candidatus Liberibacter asiaticus’ (CLas) designated as Huanglongbing (HLB) which posed a risk of detrimental threat to the Malaysian citrus industry. All D. citri life stages show a lumped habit [...] Read more.
Diaphorina citri Kuwayama transmits a destructive citrus disease caused by a fastidious bacterium ‘Candidatus Liberibacter asiaticus’ (CLas) designated as Huanglongbing (HLB) which posed a risk of detrimental threat to the Malaysian citrus industry. All D. citri life stages show a lumped habit on young flushes and its population fluctuations was closely related to accessibility of young flushes. The study aimed to investigate if the appearance of young flush shoots on citrus influences ACP population fluctuation and if horticultural mineral oil (HMO) could reduce spread of HLB transmission by ACP in a commercial healthy orchard. Field research was carried out from 1 April 2011 to 1 December 2014 in a 2-year-old 1 ha citrus farm that consisted of 200 PCR-certified disease-free grafted non-bearing honey tangerine (Citrus reticulata L.) in southwestern Sarawak, Malaysia. The experiment had two treatments namely control (unsprayed) and nC24 HMO with four replications arranged in a simple randomized block design. ACP eggs, nymphs, and adults per flush shoot was assessed and HLB incidence was monitored for visual inspection of the citrus trees for the current existence of usual signs of characteristic symptoms of HLB such as yellowing shoots, leaf mottling, and corky or enlarged veins on leaves. HLB-specific primer was employed in 16S rDNA polymerase chain reaction to detect the CLas gene in diseased trees. Increase in abundance of D. citri is mainly affected by the citrus flushing cycles and their life stages are completed on these flush shoots. Relative degree of aggregation index for D. citri adults increased during periods of cyclic production of new flush. HMO-treated plots produced a significantly lower percentage up to 11.43% of diseased trees against 42.20% in untreated control plots. HMO is effective against D. citri and recommended to be incorporated in the IPM program to prevent infection and reduce the spread of HLB. Full article
(This article belongs to the Special Issue Sustainable Management Methods for Orchard Insect Pests)
Show Figures

Figure 1

23 pages, 4611 KiB  
Article
Molecular and Environmental Triggering Factors of Pathogenicity of Fusarium oxysporum and F. solani Isolates Involved in the Coffee Corky-Root Disease
by Roberto Gamboa-Becerra, Daniel López-Lima, Luc Villain, Jean-Christophe Breitler, Gloria Carrión and Damaris Desgarennes
J. Fungi 2021, 7(4), 253; https://doi.org/10.3390/jof7040253 - 27 Mar 2021
Cited by 8 | Viewed by 3497
Abstract
Coffee corky-root disease causes serious damages to coffee crop and is linked to combined infection of Fusarium spp. and root-knot nematodes Meloidogyne spp. In this study, 70 Fusarium isolates were collected from both roots of healthy coffee plants and with corky-root disease symptoms. [...] Read more.
Coffee corky-root disease causes serious damages to coffee crop and is linked to combined infection of Fusarium spp. and root-knot nematodes Meloidogyne spp. In this study, 70 Fusarium isolates were collected from both roots of healthy coffee plants and with corky-root disease symptoms. A phylogenetic analysis, and the detection of pathogenicity SIX genes and toxigenicity Fum genes was performed for 59 F. oxysporum and 11 F. solani isolates. Based on the molecular characterization, seven F. oxysporum and three F. solani isolates were assessed for their pathogenicity on coffee seedlings under optimal watering and water stress miming root-knot nematode effect on plants. Our results revealed that a drastic increment of plant colonization capacity and pathogenicity on coffee plants of some Fusarium isolates was caused by water stress. The pathogenicity on coffee of F. solani linked to coffee corky-root disease and the presence of SIX genes in this species were demonstrated for the first time. Our study provides evidence for understanding the pathogenic basis of F. oxysporum and F. solani isolates on coffee and revealed the presence of SIX and Fum genes as one of their pathogenicity-related mechanisms. We also highlight the relevance of chlorophyll, a fluorescence as an early and high-throughput phenotyping tool in Fusarium pathogenicity studies on coffee. Full article
(This article belongs to the Special Issue Plant and Fungal Interactions)
Show Figures

Figure 1

19 pages, 3627 KiB  
Article
Fast, Precise, and Reliable Multiplex Detection of Potato Viruses by Loop-Mediated Isothermal Amplification
by Güven Edgü, Lena Julie Freund, Stefanie Hartje, Eckhard Tacke, Hans-Reinhard Hofferbert, Richard M. Twyman, Gundula A. Noll, Jost Muth and Dirk Prüfer
Int. J. Mol. Sci. 2020, 21(22), 8741; https://doi.org/10.3390/ijms21228741 - 19 Nov 2020
Cited by 15 | Viewed by 4870
Abstract
Potato is an important staple food crop in both developed and developing countries. However, potato plants are susceptible to several economically important viruses that reduce yields by up to 50% and affect tuber quality. One of the major threats is corky ringspot, which [...] Read more.
Potato is an important staple food crop in both developed and developing countries. However, potato plants are susceptible to several economically important viruses that reduce yields by up to 50% and affect tuber quality. One of the major threats is corky ringspot, which is a tuber necrosis caused by tobacco rattle virus (TRV). The appearance of corky ringspot symptoms on tubers prior to commercialization results in ≈ 45% of the tubers being downgraded in quality and value, while ≈ 55% are declared unsaleable. To improve current disease management practices, we have developed simple diagnostic methods for the reliable detection of TRV without RNA purification, involving minimalized sample handling (mini), subsequent improved colorimetric loop-mediated isothermal amplification (LAMP), and final verification by lateral-flow dipstick (LFD) analysis. Having optimized the mini-LAMP-LFD approach for the sensitive and specific detection of TRV, we confirmed the reliability and robustness of this approach by the simultaneous detection of TRV and other harmful viruses in duplex LAMP reactions. Therefore, our new approach offers breeders, producers, and farmers an inexpensive and efficient new platform for disease management in potato breeding and cultivation. Full article
Show Figures

Graphical abstract

Back to TopTop