Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = copper-loaded chitosan nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2735 KiB  
Article
Chitosan-Loaded Copper Oxide Nanoparticles: A Promising Antifungal Nanocomposite against Fusarium Wilt Disease of Tomato Plants
by Mohamed A. Mosa and Sozan E. El-Abeid
Sustainability 2023, 15(19), 14295; https://doi.org/10.3390/su151914295 - 27 Sep 2023
Cited by 10 | Viewed by 3258
Abstract
The extensive use of agrochemicals for crop protection is increasing their environmental risks. Due to the incredible antimicrobial potential of nanomaterials, research into their potential use in sustainable agriculture as alternatives to chemical fungicides is advancing rapidly. In this study, we evaluated the [...] Read more.
The extensive use of agrochemicals for crop protection is increasing their environmental risks. Due to the incredible antimicrobial potential of nanomaterials, research into their potential use in sustainable agriculture as alternatives to chemical fungicides is advancing rapidly. In this study, we evaluated the possible antifungal properties of copper oxide nanocomposite (CH@CuO NPs) coated with chitosan in order to fend off Fusarium wilt diseases in tomato plants caused by F. oxysporum f. sp. lycopersici (FOL) throughout in vitro and in vivo experiments. Here, we demonstrate some of the characteristics of a potential antifungal nanocomposite composed of copper oxide nanoparticles (CuO NPs), firmly immobilized on chitosan nanoparticle (CH) surfaces as dark spots, with an irregular shape and 54.22 nm in size, as indicated by Transmission electron microscope (TEM) analysis. Spectroscopic and microscopic investigations, as well as its antifungal efficacy, verified that the successful synthesis of the CH@CuO NPs at three different concentrations (1, 25, and 50) mg/L against three different wild isolates of the pathogenic Fusarium oxysporum that infect tomatoes was successfully proven to be effective. In vitro comparisons revealed that CH@CuO NPs showed stronger antifungal activity at only 1 mg/L (96.22 ± 1.35) than the classical chemical fungicide “Kocide 2000” at conc. 2.5 g/L (77.34 ± 0.33), for example, in the case of FOL1 isolate. In accordance with the in vivo data, tomato plants can be treated with only 1 mg/L of CH@CuO NPs for up to 75 days, by which time Fusarium wilt disease severity is reduced by 91.5% In contrast, 2.5 g/L of Kocide 2000 is required to reduce disease in tomato plants by about 90%. This research expands our understanding of agro-nanotechnology by outlining the characteristics of a unique, environmentally friendly, and economically viable nanopesticide for long-term plant protection. Full article
Show Figures

Figure 1

20 pages, 2227 KiB  
Article
Protective Properties of Copper-Loaded Chitosan Nanoparticles against Soybean Pathogens Pseudomonas savastanoi pv. glycinea and Curtobacterium flaccumfaciens pv. flaccumfaciens
by Rashit Tarakanov, Balzhima Shagdarova, Tatiana Lyalina, Yuliya Zhuikova, Alla Il’ina, Fevzi Dzhalilov and Valery Varlamov
Polymers 2023, 15(5), 1100; https://doi.org/10.3390/polym15051100 - 22 Feb 2023
Cited by 12 | Viewed by 3747
Abstract
Soybeans are a valuable food product, containing 40% protein and a large percentage of unsaturated fatty acids ranging from 17 to 23%. Pseudomonas savastanoi pv. glycinea (Psg) and Curtobacterium flaccumfaciens pv. flaccumfaciens (Cff) are harmful bacterial pathogens of soybean. The bacterial resistance of [...] Read more.
Soybeans are a valuable food product, containing 40% protein and a large percentage of unsaturated fatty acids ranging from 17 to 23%. Pseudomonas savastanoi pv. glycinea (Psg) and Curtobacterium flaccumfaciens pv. flaccumfaciens (Cff) are harmful bacterial pathogens of soybean. The bacterial resistance of soybean pathogens to existing pesticides and environmental concerns requires new approaches to control bacterial diseases. Chitosan is a biodegradable, biocompatible and low-toxicity biopolymer with antimicrobial activity that is promising for use in agriculture. In this work, a chitosan hydrolysate and its nanoparticles with copper were obtained and characterized. The antimicrobial activity of the samples against Psg and Cff was studied using the agar diffusion method, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The samples of chitosan and copper-loaded chitosan nanoparticles (Cu2+ChiNPs) significantly inhibited bacterial growth and were not phytotoxic at the concentrations of the MIC and MBC values. The protective properties of chitosan hydrolysate and copper-loaded chitosan nanoparticles against soybean bacterial diseases were tested on plants in an artificial infection. It was demonstrated that the Cu2+ChiNPs were the most effective against Psg and Cff. Treatment of pre-infected leaves and seeds demonstrated that the biological efficiencies of (Cu2+ChiNPs) were 71% and 51% for Psg and Cff, respectively. Copper-loaded chitosan nanoparticles are promising as an alternative treatment for bacterial blight and bacterial tan spot and wilt in soybean. Full article
(This article belongs to the Special Issue Natural-Based Biodegradable Polymeric Materials)
Show Figures

Graphical abstract

25 pages, 11690 KiB  
Article
Synthesis, Characterization and Nanoformulation of Novel Sulfonamide-1,2,3-triazole Molecular Conjugates as Potent Antiparasitic Agents
by Faizah S. Aljohani, Nadjet Rezki, Mohamed R. Aouad, Bassma H. Elwakil, Mohamed Hagar, Eman Sheta, Nermine Mogahed Fawzy Hussein Mogahed, Sanaa K. Bardaweel and Nancy Abd-elkader Hagras
Int. J. Mol. Sci. 2022, 23(8), 4241; https://doi.org/10.3390/ijms23084241 - 11 Apr 2022
Cited by 21 | Viewed by 3530
Abstract
Toxoplasma gondii (T. gondii) is a highly prevalent parasite that has no gold standard treatment due to the poor action or the numerous side effects. Focused sulfonamide-1,2,3-triazole hybrids 3a–c were wisely designed and synthesized via copper catalyzed 1,3-dipolar cycloaddition approach between [...] Read more.
Toxoplasma gondii (T. gondii) is a highly prevalent parasite that has no gold standard treatment due to the poor action or the numerous side effects. Focused sulfonamide-1,2,3-triazole hybrids 3a–c were wisely designed and synthesized via copper catalyzed 1,3-dipolar cycloaddition approach between prop-2-yn-1-alcohol 1 and sulfa drug azides 2a–c. The newly synthesized click products were fully characterized using different spectroscopic experiments and were loaded onto chitosan nanoparticles to form novel nanoformulations for further anti-Toxoplasma investigation. The current study proved the anti-Toxoplasma effectiveness of all examined compounds in experimentally infected mice. Relative to sulfadiazine, the synthesized sulfonamide-1,2,3-triazole (3c) nanoformulae demonstrated the most promising result for toxoplasmosis treatment as it resulted in 100% survival, 100% parasite reduction along with the remarkable histopathological improvement in all the studied organs. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 18247 KiB  
Article
Polyelectrolyte-Coated Mesoporous Bioactive Glasses via Layer-by-Layer Deposition for Sustained Co-Delivery of Therapeutic Ions and Drugs
by Carlotta Pontremoli, Mattia Pagani, Lorenza Maddalena, Federico Carosio, Chiara Vitale-Brovarone and Sonia Fiorilli
Pharmaceutics 2021, 13(11), 1952; https://doi.org/10.3390/pharmaceutics13111952 - 17 Nov 2021
Cited by 16 | Viewed by 2546
Abstract
In the field of bone regeneration, considerable attention has been addressed towards the use of mesoporous bioactive glasses (MBGs), as multifunctional therapeutic platforms for advanced medical devices. In fact, their extremely high exposed surface area and pore volume allow to load and the [...] Read more.
In the field of bone regeneration, considerable attention has been addressed towards the use of mesoporous bioactive glasses (MBGs), as multifunctional therapeutic platforms for advanced medical devices. In fact, their extremely high exposed surface area and pore volume allow to load and the release of several drugs, while their framework can be enriched with specific therapeutic ions allowing to boost the tissue regeneration. However, due to the open and easily accessible mesopore structure of MBG, the release of the incorporated therapeutic molecules shows an initial burst effect leading to unsuitable release kinetics. Hence, a still open challenge in the design of drug delivery systems based on MBGs is the control of their release behavior. In this work, Layer-by-layer (LbL) deposition of polyelectrolyte multi-layers was exploited as a powerful and versatile technique for coating the surface of Cu-substituted MBG nanoparticles with innovative multifunctional drug delivery systems for co-releasing of therapeutic copper ions (exerting pro-angiogenic and anti-bacterial effects) and an anti-inflammatory drug (ibuprofen). Two different routes were investigated: in the first strategy, chitosan and alginate were assembled by forming the multi-layered surface, and, successively, ibuprofen was loaded by incipient wetness impregnation, while in the second approach, alginate was replaced by ibuprofen, introduced as polyelectrolyte layer. Zeta-potential, TGA and FT-IR spectroscopy were measured after the addition of each polyelectrolyte layer, confirming the occurrence of the stepwise deposition. In addition, the in vitro bioactivity and the ability to modulate the release of the cargo were evaluated. The polyelectrolyte coated-MBGs were proved to retain the peculiar ability to induce hydroxyapatite formation after 7 days of soaking in Simulated Body Fluid. Both copper ions and ibuprofen were co-released over time, showing a sustained release profile up to 14 days and 24 h, respectively, with a significantly lower burst release compared to the bare MBG particles. Full article
Show Figures

Graphical abstract

17 pages, 8665 KiB  
Article
Zinc Oxide and Copper Chitosan Composite Films with Antimicrobial Activity
by Candy del Carmen Gamboa-Solana, Martha Gabriela Chuc-Gamboa, Fernando Javier Aguilar-Pérez, Juan Valerio Cauich-Rodríguez, Rossana Faride Vargas-Coronado, David Alejandro Aguilar-Pérez, José Rubén Herrera-Atoche and Neith Pacheco
Polymers 2021, 13(22), 3861; https://doi.org/10.3390/polym13223861 - 9 Nov 2021
Cited by 28 | Viewed by 4943
Abstract
The role of the oral microbiome and its effect on dental diseases is gaining interest. Therefore, it has been sought to decrease the bacterial load to fight oral cavity diseases. In this study, composite materials based on chitosan, chitosan crosslinked with glutaraldehyde, chitosan [...] Read more.
The role of the oral microbiome and its effect on dental diseases is gaining interest. Therefore, it has been sought to decrease the bacterial load to fight oral cavity diseases. In this study, composite materials based on chitosan, chitosan crosslinked with glutaraldehyde, chitosan with zinc oxide particles, and chitosan with copper nanoparticles were prepared in the form of thin films, to evaluate a new alternative with a more significant impact on the oral cavity bacteria. The chemical structures and physical properties of the films were characterized using by Fourier transform infrared spectroscopy (FTIR,) Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), elemental analysis (EDX), thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and contact angle measurements. Subsequently, the antimicrobial activity of each material was evaluated by agar diffusion tests. No differences were found in the hydrophilicity of the films with the incorporation of ZnO or copper particles. Antimicrobial activity was found against S. aureus in the chitosan film crosslinked with glutaraldehyde, but not in the other compositions. In contrast antimicrobial activity against S. typhimurium was found in all films. Based on the data of present investigation, chitosan composite films could be an option for the control of microorganisms with potential applications in various fields, such as medical and food industry. Full article
(This article belongs to the Special Issue Marine Biomolecules from Food By-Products: Chitosan and Gelatine)
Show Figures

Graphical abstract

19 pages, 4122 KiB  
Article
Preparation and Identification of Optimal Synthesis Conditions for a Novel Alkaline Anion-Exchange Membrane
by Aitor Marcos-Madrazo, Clara Casado-Coterillo, Leticia García-Cruz, Jesús Iniesta, Laura Simonelli, Víctor Sebastián, María Del Mar Encabo-Berzosa, Manuel Arruebo and Ángel Irabien
Polymers 2018, 10(8), 913; https://doi.org/10.3390/polym10080913 - 13 Aug 2018
Cited by 13 | Viewed by 5641
Abstract
The physicochemical and mechanical properties of new alkaline anion-exchange membranes (AAEMs) based on chitosan (CS) and poly(vinyl alcohol) (PVA) polymers doped with unsupported copper nanoparticles (NPs) and copper exchanged over different porous materials were investigated regarding ion-exchange capacity (IEC), OH conductivity, water [...] Read more.
The physicochemical and mechanical properties of new alkaline anion-exchange membranes (AAEMs) based on chitosan (CS) and poly(vinyl alcohol) (PVA) polymers doped with unsupported copper nanoparticles (NPs) and copper exchanged over different porous materials were investigated regarding ion-exchange capacity (IEC), OH conductivity, water uptake (WU), water vapor permeability (WVP), and thermal and mechanical resistance. The influence of the type of filler included in different morphologies and filler loading has been explored using copper exchanged materials such as the layered porous titanosilicate AM-4, layered stannosilicate UZAR-S3, and zeolites Y, MOR, and BEA. Compared to commercially available anion-exchange membranes, the best performing membranes in terms of WU, IEC, OH conductivity and WVP in this study were those containing 10 wt % of Cu-AM-4 and Cu-UZAR-S3, although 10 wt % Cu-MOR provided better mechanical strength at close values of WVP and anion conductivity. It was also observed that when Cu was exchanged in a porous silicate matrix, its oxidation state was lower than when embedded as unsupported metal NPs. In addition, the statistical analysis of variance determined that the electrochemical properties of the membranes were noticeably affected by both the type and filler loading, and influenced also by the copper oxidation state and content in the membrane, but their hydrophilic properties were more affected by the polymers. The largest significant effects were noticed on the water sorption and transport properties, which gives scope for the design of AAEMs for electrochemical and water treatment applications. Full article
Show Figures

Graphical abstract

15 pages, 3390 KiB  
Article
Development of Useful Biomaterial for Bone Tissue Engineering by Incorporating Nano-Copper-Zinc Alloy (nCuZn) in Chitosan/Gelatin/Nano-Hydroxyapatite (Ch/G/nHAp) Scaffold
by Juan Carlos Forero, Eduardo Roa, Juan G. Reyes, Cristian Acevedo and Nelson Osses
Materials 2017, 10(10), 1177; https://doi.org/10.3390/ma10101177 - 17 Oct 2017
Cited by 70 | Viewed by 8021
Abstract
Ceramic and metallic nanoparticles can improve the mechanical and biological properties of polymeric scaffolds for bone tissue engineering (BTE). In this work, nanohydroxyapatite (nHAp) and nano-copper-zinc alloy (nCuZn) were added to a chitosan/gelatin (Ch/G) scaffold in order to investigate the effects on morphological, [...] Read more.
Ceramic and metallic nanoparticles can improve the mechanical and biological properties of polymeric scaffolds for bone tissue engineering (BTE). In this work, nanohydroxyapatite (nHAp) and nano-copper-zinc alloy (nCuZn) were added to a chitosan/gelatin (Ch/G) scaffold in order to investigate the effects on morphological, physical, and biocompatibility properties. Scaffolds were fabricated by a freeze-drying technique using different pre-freezing temperatures. Microstructure and morphology were studied by scanning electron microscopy (SEM), glass transition (Tg) was studied using differential scanning calorimetry (DSC), cell growth was estimated by MTT assay, and biocompatibility was examined in vitro and in vivo by histochemistry analyses. Scaffolds and nanocomposite scaffolds presented interconnected pores, high porosity, and pore size appropriate for BTE. Tg of Ch/G scaffolds was diminished by nanoparticle inclusion. Mouse embryonic fibroblasts (MEFs) cells loaded in the Ch/G/nHAp/nCuZn nanocomposite scaffold showed suitable behavior, based on cell adhesion, cell growth, alkaline phosphatase (ALP) activity as a marker of osteogenic differentiation, and histological in vitro cross sections. In vivo subcutaneous implant showed granulation tissue formation and new tissue infiltration into the scaffold. The favorable microstructure, coupled with the ability to integrate nanoparticles into the scaffold by freeze-drying technique and the biocompatibility, indicates the potential of this new material for applications in BTE. Full article
(This article belongs to the Special Issue Polymeric Materials for Medical Applications)
Show Figures

Figure 1

Back to TopTop