Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = controlled low-strength material (CLSM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 9084 KiB  
Article
Early-Strength Controllable Geopolymeric CLSM Derived by Shield Tunneling Muck: Performance Optimization and Hydration Mechanism of GGBFS–CS Systems
by Jiguo Liu, Jun Zhang, Xiaohui Sun, Shutong Dong and Silin Wu
Buildings 2025, 15(13), 2373; https://doi.org/10.3390/buildings15132373 - 6 Jul 2025
Viewed by 361
Abstract
The large-scale reuse of shield tunneling muck remains a major challenge in urban construction. This study proposes a geopolymeric-controlled low-strength material (GC-CLSM) utilizing shield tunneling muck as the primary raw material and a novel alkali-activated binder composed of ground granulated blast-furnace slag (GGBFS) [...] Read more.
The large-scale reuse of shield tunneling muck remains a major challenge in urban construction. This study proposes a geopolymeric-controlled low-strength material (GC-CLSM) utilizing shield tunneling muck as the primary raw material and a novel alkali-activated binder composed of ground granulated blast-furnace slag (GGBFS) and carbide slag (CS). Emphasis is placed on early-age strength development and its underlying mechanisms, which were often overlooked in previous CLSM studies. Among the tested mixtures, a GGBFS:CS ratio of 80:20 yielded the best balance between early and long-term strength. Its 1-day UCS reached 1.18–1.75 MPa, representing a 6.3–23.6-fold increase over the low-CS reference (90:10), which achieved only 0.05–0.31 MPa. However, excessive CS content (e.g., 60:40) led to a significant reduction in the 28-day strength—up to nearly 50% compared with the 90:10 mix—due to impaired microstructural densification. Microstructural analyses (pore-solution pH, SEM, EDS, XRD, FTIR, LF-NMR) confirmed that higher CS levels enhanced early C–A–S–H gel formation by increasing OH and Ca2+ availability while compromising long-term structure. Additionally, the GC-CLSM system reduced carbon emissions by 68.6–70.3% per ton of treated shield tunneling muck compared with conventional cement-based CLSM. Overall, this study offers a sustainable and performance-driven approach for the valorization of shield tunneling muck, enabling the development of early-strength controllable, low-carbon CLSM for infrastructure applications. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

23 pages, 5139 KiB  
Article
Geopolymer CLSM with Off-Specification Fly Ash and Bottom Ash: A Sustainable Approach to Hazardous Waste Utilization
by Alexis K. VanDomelen, Ahmed A. Gheni, Eslam Gomaa and Mohamed A. ElGawady
Materials 2025, 18(13), 3105; https://doi.org/10.3390/ma18133105 - 1 Jul 2025
Viewed by 733
Abstract
Conventional controlled low-strength material (CLSM) is a self-consolidating cementitious material with high flowability and low strength, traditionally composed of cement, sand, and water. This study explores the sustainable utilization of off-specification fly ash (OSFA) and bottom ash (BA), classified as industrial by-products with [...] Read more.
Conventional controlled low-strength material (CLSM) is a self-consolidating cementitious material with high flowability and low strength, traditionally composed of cement, sand, and water. This study explores the sustainable utilization of off-specification fly ash (OSFA) and bottom ash (BA), classified as industrial by-products with potential environmental hazards, to develop eco-friendly geopolymer CLSM as an alternative to conventional CLSM. Sodium hydroxide (NaOH) was used as an alkali activator to stabilize and solidify both two-part (liquid NaOH) and one-part (solid NaOH pellets) geopolymer CLSM mixtures. These mixtures were evaluated based on flowability (ASTM D6103-17) and compressive strength (<300 psi per ACI Committee 229 guidelines for excavatability). A cost analysis was also conducted. The results demonstrated that incorporating OSFA as a cement replacement increased water demand by 15% to meet flowability requirements, while BA substitution for sand led to segregation challenges requiring mixture adjustments. For two-part mixtures, higher carbon content in OSFA necessitated an increased water-to-fly ash ratio. All self-consolidating mixtures exhibited 1-day compressive strengths ranging from 5 psi (0.03 MPa) to 87 psi (0.6 MPa). One-part mixtures showed a 1% to 34% reduction in 7-day compressive strength compared to two-part mixtures, improving excavatability. Increasing the BA-to-OSFA ratio from 1:1 to 3:1 reduced water demand due to lower surface area but increased the NaOH/OSFA ratio. This study highlights the potential of geopolymer CLSM to reduce costs by up to 94% at current NaOH prices (USD 6 per cubic yard) while repurposing hazardous industrial by-products, offering a cost-efficient, sustainable, and environmentally responsible solution for CLSM production. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

23 pages, 12220 KiB  
Article
Investigation on the Properties of Alkali-Activated Industrial Solid Waste and Excavated-Soil-Based Controlled Low-Strength Materials
by Chen Xu, Xiaolei Wang, Libo Liu and Yancang Li
Materials 2025, 18(11), 2474; https://doi.org/10.3390/ma18112474 - 25 May 2025
Viewed by 438
Abstract
This study aims to address the challenge of backfill compaction in the confined spaces of municipal utility tunnel trenches and to develop an environmentally friendly, zero-cement-based backfill material. The research focuses on the excavation slag soil from a utility tunnel project in Handan. [...] Read more.
This study aims to address the challenge of backfill compaction in the confined spaces of municipal utility tunnel trenches and to develop an environmentally friendly, zero-cement-based backfill material. The research focuses on the excavation slag soil from a utility tunnel project in Handan. An alkali-activated industrial-solid-waste-excavated slag-soil-based controllable low-strength material (CLSM) was developed, using NaOH as the activator, a slag–fly ash composite system as the binder, and steel slag-excavated slag as the fine aggregate. The effects of the water-to-solid ratio (0.40–0.45) and the binder-to-sand ratio (0.20–0.40) on CLSM fluidity were studied to determine optimal values for these parameters. Additionally, the influence of excavated soil content (45–65%), slag content (30–70%), and NaOH content (1–5%) on fluidity (flowability and bleeding rate) and mechanical properties (3-day, 7-day, and 28-day unconfined compressive strength (UCS)) was investigated. The results showed that when the water-to-solid ratio is 0.445 and the binder-to-sand ratio is 0.30, the material meets both experimental and practical requirements. CLSM fluidity was mainly influenced by the excavated soil and slag contents, while NaOH content had minimal effect. The unconfined compressive strength at different curing ages was negatively correlated with the excavated soil content, while it was positively correlated with slag and NaOH content. Based on these findings, the preparation of “zero-cement” CLSM using industrial solid waste and excavation slag is feasible. For trench backfill projects, a mix of 50–60% excavated soil, 40–60% slag, and 3–5% NaOH is recommended for optimal engineering performance. CLSM is a new type of green backfill material that uses excavated soil and industrial solid waste to prepare alkali-activated materials. It can effectively increase the amount of excavated soil and alleviate energy consumption. This is conducive to the reuse of resources, environmental protection, and sustainable development. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

25 pages, 5879 KiB  
Article
Transforming Waste Red-Bed Mudstone into Sustainable Controlled Low-Strength Materials: Mix Design for Enhanced Engineering Performance
by Wei Qi, Na Fu, Jianbiao Du, Xianliang Wang and Tengfei Wang
Buildings 2025, 15(9), 1439; https://doi.org/10.3390/buildings15091439 - 24 Apr 2025
Viewed by 313
Abstract
Red-bed mudstone from civil excavation is often treated as waste due to its poor water stability and tendency to disintegrate. This study proposes a sustainable approach for its utilization in controlled low-strength material (CLSM) by blending it with cement and water. Laboratory tests [...] Read more.
Red-bed mudstone from civil excavation is often treated as waste due to its poor water stability and tendency to disintegrate. This study proposes a sustainable approach for its utilization in controlled low-strength material (CLSM) by blending it with cement and water. Laboratory tests evaluated the fresh properties (i.e., flowability, bleeding rate, setting time, and subsidence rate) and hardened properties (i.e., compressive strength, drying shrinkage, and wet–dry durability) of the CLSM. The analysis focused on two main parameters: cement-to-soil ratio (C/S) and water-to-solid ratio (W/S). The results show that increasing W/S significantly improves flowability, while increasing C/S also contributes positively. Flowability decreased exponentially over time, with an approximately 30% loss recorded after 3 h. Bleeding and subsidence rates rose sharply with higher W/S but were only marginally affected by C/S. To meet performance requirements, W/S should be kept below 52%. In addition, the setting times remained within 24 h for all mixtures tested. Compressive strength showed a negative correlation with W/S and a positive correlation with C/S. When C/S ranged from 8% to 16% and W/S from 44% to 56%, the compressive strengths ranged from 0.3 MPa to 1.22 MPa, meeting typical backfilling needs. Drying shrinkage was correlated positively with water loss, and it decreased with greater C/S. Notably, cement’s addition significantly enhanced water stability. At a C/S of 12%, the specimens remained intact after 13 wet–dry cycles, retaining over 80% of their initial strength. Based on these findings, predictive models for strength and flowability were developed, and a mix design procedure was proposed. This resulted in two optimized proportions suitable for confined backfilling. This study provides a scientific basis for the resource-oriented reuse of red-bed mudstone in civil engineering projects. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 8770 KiB  
Article
Mechanism of Crack Development and Strength Deterioration in Controlled Low-Strength Material in Dry Environment
by Wei Peng and Zili Dai
Sustainability 2025, 17(3), 965; https://doi.org/10.3390/su17030965 - 24 Jan 2025
Viewed by 1207
Abstract
The continuous expansion at the urban scale has produced a lot of construction waste, which has created increasingly serious problems in the environmental, social, and economic realms. Reuse of this waste can address these problems and is critical for sustainable development. In recent [...] Read more.
The continuous expansion at the urban scale has produced a lot of construction waste, which has created increasingly serious problems in the environmental, social, and economic realms. Reuse of this waste can address these problems and is critical for sustainable development. In recent years, construction waste has been extensively recycled and transformed into highly sustainable construction materials called controlled low-strength materials (CLSMs) in backfilling projects, pile foundation treatment, roadbed cushion layers, and other applications. However, CLSMs often experience shrinkage and cracking due to water loss influenced by climatic temperature factors, which can pose safety and stability risks in various infrastructures. The purpose of this paper was to study the mechanism of crack formation and strength degradation in a CLSM in a dry environment and to analyze the deterioration process of the CLSM at the macro- and micro-scales by using image analysis techniques and scanning electron microscopy (SEM). The test results show that with the drying time, the CLSM samples had different degrees of cracks and unconfined compressive strength (UCS) decreases, and increasing the content of ordinary Portland cement (OPC) reduced the number of cracks. The addition of bentonite with the same OPC content also slowed down the crack development and reduced the loss of UCS. The development of macroscopic cracks and UCS is caused by the microscopic scale, and the weak areas are formed due to water loss in dry environments and the decomposition of gel products, and the integrity of the microstructure is weakened, which is manifested as strength deterioration. This research provides a novel methodology for the reuse of construction waste, thereby offering a novel trajectory for the sustainable progression of construction projects. Full article
(This article belongs to the Special Issue Advanced Concrete- and Cement-Based Composite Materials)
Show Figures

Figure 1

15 pages, 2266 KiB  
Article
Optimizing Cement Content in Controlled Low-Strength Soils: Effects of Water Content and Hydration Time
by Yilian Luo, Liangwei Jiang, Libing Qin, Qiang Luo, David P. Connolly and Tengfei Wang
Materials 2024, 17(23), 5915; https://doi.org/10.3390/ma17235915 - 3 Dec 2024
Cited by 2 | Viewed by 1048
Abstract
The Ethylene Diamine Tetra-acetic Acid (EDTA) titration test is widely used for determining cement content, but its reliability is influenced by the hydration process of cement, which is affected by factors such as water content and hydration time. Despite their importance, these factors [...] Read more.
The Ethylene Diamine Tetra-acetic Acid (EDTA) titration test is widely used for determining cement content, but its reliability is influenced by the hydration process of cement, which is affected by factors such as water content and hydration time. Despite their importance, these factors have received limited attention in existing research. This study explores the relationships between the volume of titrant required for stabilization, cement content, water content, and hydration time. Using a regression orthogonal test, the primary and secondary relationships, as well as the interdependencies among these factors, are analyzed. Results reveal a negative linear relationship between the titrant volume and both water content and hydration time. Cement content, water content, and hydration time are identified as the most significant factors, with minimal interdependencies observed. Within the test parameters, calculated values exhibit an error margin below 2.4%. Deviations of 2.9% in water content and 86 min in hydration time correspond to an approximate 0.5% change in cement content. These findings offer valuable insights for optimizing cement content detection in Controlled Low-Strength Material (CLSM) mixes, promoting more sustainable construction practices. Full article
Show Figures

Figure 1

21 pages, 11804 KiB  
Article
Development and Characterization of Sustainable Cement-Free Controlled Low Strength Material Using Titanium Gypsum and Construction Waste Soil
by Yunfei Wu, Jian Geng, Haoze Zhu, Chen Jin and Nengneng Kang
Materials 2024, 17(23), 5698; https://doi.org/10.3390/ma17235698 - 21 Nov 2024
Cited by 1 | Viewed by 782
Abstract
This study investigates the utilization of titanium gypsum (TG) and construction waste soil (CWS) for the development of sustainable, cement-free Controlled Low Strength Material (CLSM). TG, combined with ground granulated blast furnace slag, fly ash, and quicklime, serves as the binder, while CWS [...] Read more.
This study investigates the utilization of titanium gypsum (TG) and construction waste soil (CWS) for the development of sustainable, cement-free Controlled Low Strength Material (CLSM). TG, combined with ground granulated blast furnace slag, fly ash, and quicklime, serves as the binder, while CWS replaces natural sand. Testing thirteen mixtures revealed that a CWS replacement rate of over 40% controls bleeding below 5%, with a water-to-solid ratio between 0.40 and 0.46, ensuring flowability. Higher TG content reduces flowability but is crucial for strength due to its role in forming a crystalline network. Compressive strength decreases with higher TG and water-to-solid ratio, while 3–5% quicklime provides a 56 day strength below 2.1 MPa. Higher CWS reduces expansion, and TG content between 60% and 70% minimizes volume changes. XRD and SEM analyses underscore the importance of controlling TG and quicklime content to optimize CLSM’s mechanical properties, highlighting the potential of TG and CWS in creating low carbon CLSM. Full article
Show Figures

Figure 1

15 pages, 3098 KiB  
Article
Development of a Controlled Low-Strength Material Containing Paraffin–Rice Husk Ash Composite Phase Change Material
by Hongfei Xu and Wenting Qu
Coatings 2024, 14(9), 1173; https://doi.org/10.3390/coatings14091173 - 11 Sep 2024
Cited by 4 | Viewed by 1266
Abstract
In order to reduce heat loss and diffusion of underground heating pipelines, this research incorporated phase change material (PCM) into the controlled low-strength material (CLSM) to prepare a pipeline backfill material with temperature control performance. In response to the problem that PCM leaks [...] Read more.
In order to reduce heat loss and diffusion of underground heating pipelines, this research incorporated phase change material (PCM) into the controlled low-strength material (CLSM) to prepare a pipeline backfill material with temperature control performance. In response to the problem that PCM leaks easily, a new type of paraffin–rice husk ash composite PCM (PR-PCM) was obtained by adsorbing melted paraffin into rice husk ash. Through mixing PR-PCM with dredged sediment (DS) and ordinary Portland cement (OPC), a controlled low-strength material (CLSM) with temperature control performance was prepared. The flowability, mechanical properties, microscopic characteristics, thermal characteristics, and durability of CLSM were analyzed through flowability, unconfined compressive strength (UCS), X-ray diffraction (XRD), scanning electronic microscopy (SEM), differential scanning calorimetry (DSC), and phase change cycle tests. The results show that when water consumption is constant, as the PR-PCM content increases, the flowability of CLSM increases, and the strength decreases. The CLSM has an obvious paraffin diffraction peak in the XRD pattern, and its microstructure is dense with few pores. The melting point of CLSM is 50.65 °C and the latent heat is 4.10 J/g. Compared with CLSM without PR-PCM, the maximum temperature difference during the heating process can reach 3.40 °C, and the heat storage performance is improved by 4.1%. The strength of CLSM increases and the melting point decreases after phase change cycles. CLSM containing PR-PCM has the characteristics of phase change temperature control, which plays a positive role in reducing heat loss by heating pipelines and temperature change in backfill areas. Full article
Show Figures

Figure 1

16 pages, 10573 KiB  
Article
Optimization of Controlled Low-Strength Material from Multi-Component Coal-Based Solid Waste
by Tianxiang Chen, Ning Yuan, Shanhu Wang, Xinling Zhang, Chaoyang Lin, Xinyue Wu, Qibao Wang and Dongmin Wang
Sustainability 2024, 16(4), 1513; https://doi.org/10.3390/su16041513 - 10 Feb 2024
Cited by 2 | Viewed by 1717
Abstract
Recently, controlled low-strength material (CLSM) has been considered an easy-to-mix material, and the raw material is usually derived from solid waste, suggesting lower production costs. Moreover, the resource utilization of waste fosters the sustainable advancement of both society and the environment. In the [...] Read more.
Recently, controlled low-strength material (CLSM) has been considered an easy-to-mix material, and the raw material is usually derived from solid waste, suggesting lower production costs. Moreover, the resource utilization of waste fosters the sustainable advancement of both society and the environment. In the present work, a CLSM with excellent performance was developed by adopting fly ash, bottom ash, desulfuration gypsum, and cement as the main cementitious materials, as well as gasification coarse slag and coal gangue as aggregates. An orthogonal experiment with three factors and three levels was designed according to the ratio of cement to binder, the contents of water, and the water-reducing agent. Further, the macroscopic properties of flowability, dry density, bleeding, compressive strength, fresh density, porosity, and absorption rate of the CLSM mixtures were tested. To optimize the CLSM proportion, the ranges of three indicators of CLSM were calculated. Experimental results manifested that the fresh and dry densities of the mixtures were within the range recommended by ACI 229. The optimal levels of cement–binder ratio (i.e., the ratio of cement to binder), water content, and water-reducing agent content are 0.24, 248 kg·m−3, and 0.80 kg·m−3, respectively. Under this condition, the flowability was 251 mm, the bleeding was 3.96%, and the compressive strength for 3 d, 7 d, and 28 d was 1.50 MPa, 3.06 MPa, and 7.79 MPa, respectively. Furthermore, the leaching values of eight heavy metals in CLSM and raw materials were less than the standard requirements, indicative of no leaching risk. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

16 pages, 3575 KiB  
Article
Experimental Study and Application of Controlled Low-Strength Materials in Trench Backfilling in Suqian City, China
by Jingmin Xu, Qiwu Luo, Yong Tang, Zhibo Zeng and Jun Liao
Materials 2024, 17(4), 775; https://doi.org/10.3390/ma17040775 - 6 Feb 2024
Cited by 6 | Viewed by 1854
Abstract
When backfilling narrow spaces, controlled low-strength materials (CLSM) can be used to achieve an effective backfilling effect. The pipeline engineering in Yahnghe Avenue of Suqian, China, provides a favorable on-site condition for the use of CLSM. However, no guidance exists for the determination [...] Read more.
When backfilling narrow spaces, controlled low-strength materials (CLSM) can be used to achieve an effective backfilling effect. The pipeline engineering in Yahnghe Avenue of Suqian, China, provides a favorable on-site condition for the use of CLSM. However, no guidance exists for the determination of the material mixture ratio of CLSM for this geological condition. Laboratory tests were performed to investigate the basic physical parameters of excavated soil and the optimal mixture ratio of CLSM. Results indicate that the sand and silt account for 29.76% and 57.23% of the weight of excavated soil, respectively. As the water content increases (from 40% to 50%), the flowability of the CLSM approximately shows a linear increase (slumps values from 154.3 mm to 269.75 mm for 9% cement content), while its compressive strength shows a linear decreasing trend (from 875.3 KPa to 468.3 KPa after curing for 28 days); as the cement content increases (from 6% to 12%), the flowability approximately shows a linear decreasing trend (from 238.8 mm to 178.5 mm for 45% water content), while the compressive strength shows a linear increasing trend (from 391.6 KPa to 987.6 KPa after curing for 28 days). By establishing the relationship between compressive strength/flowability and the water–cement ratio, the optimal material ratio is determined to be 9% cement content and 40–43% water content. The engineering application results indicate that the use of CLSM can achieve efficient and high-quality backfilling effects for pipeline trenches. The findings of this research may provide a reference for the application of CLSM in fields with similar geological conditions. Full article
Show Figures

Figure 1

19 pages, 13054 KiB  
Article
Study on Controlled Low-Strength Materials Using Ultra-Rapid-Hardening Cement and Stone Sludge for Backfill and Subbase Application in Road Excavation and Restoration Work
by Jongwon Lee and Cheolmin Baek
Buildings 2024, 14(1), 46; https://doi.org/10.3390/buildings14010046 - 22 Dec 2023
Cited by 5 | Viewed by 1966
Abstract
A significant amount of stone sludge is generated as a by-product during the production of crushed stone aggregate, and most of it is disposed of in landfill as waste. In order to recycle this stone sludge, this study evaluated a controlled low-strength material [...] Read more.
A significant amount of stone sludge is generated as a by-product during the production of crushed stone aggregate, and most of it is disposed of in landfill as waste. In order to recycle this stone sludge, this study evaluated a controlled low-strength material (CLSM) using ultra-rapid-hardening cement and stone sludge for application as backfill and subbase material for road excavation and restoration work. In addition, considering the limited construction time of excavation and restoration work in urban areas, backfill and subbase materials must simultaneously satisfy conditions of fluidity, workability, quick curing time, and certain levels of strength. Therefore, in this study, CLSM was manufactured according to various mixing ratios and flow, slump, and compressive strength tests with age were evaluated. Additionally, the change trend in the microstructure of the CLSM with age was analyzed. Through indoor experiments, the optimal mixing ratios for backfill and subbase CLSM were determined, and field applicability and performance of field samples were evaluated through small-scale field construction. It was concluded that CLSM, which contains a large amount of stone sludge, can be sufficiently applied as a backfill and subbase material for excavation and restoration work if appropriate admixtures are adjusted according to the weather conditions at sites. Full article
Show Figures

Figure 1

12 pages, 2752 KiB  
Article
Development of High-Performance Fly-Ash-Based Controlled Low-Strength Materials for Backfilling in Metropolitan Cities
by Jingyu Han, Youngseok Jo, Yunhee Kim and Bumjoo Kim
Appl. Sci. 2023, 13(16), 9377; https://doi.org/10.3390/app13169377 - 18 Aug 2023
Cited by 4 | Viewed by 1656
Abstract
Controlled low-strength materials (CLSMs) have been developed using various byproducts for backfilling or void-filling around pipelines or culvert boxes. However, these CLSMs have encountered issues related to their inadequate placement around underground facilities, despite satisfying the performance requirements, especially flowability, recommended by the [...] Read more.
Controlled low-strength materials (CLSMs) have been developed using various byproducts for backfilling or void-filling around pipelines or culvert boxes. However, these CLSMs have encountered issues related to their inadequate placement around underground facilities, despite satisfying the performance requirements, especially flowability, recommended by the American Concrete Institute (ACI) 229 committee. In this study, a new CLSM is developed to ensure a significantly higher flowability, lower segregation, and faster installation compared with previously developed CLSMs. This is achieved through a series of laboratory tests. To enhance the flowability and prevent segregation, a calcium-sulfoaluminate-based binder and fly ash are used in combination with two types of additives. The measured flowability of the new CLSM is 700 mm, while its compressive strength and bleeding satisfy the general criteria specified by the ACI 229R-13. In addition, the performance of the developed CLSM is compared with that of predeveloped CLSMs. The new CLSM was not only shown to exhibit the highest flowability, but also to satisfy the specified requirements for compressive strength and bleeding. Overall, it is anticipated that the developed CLSM can significantly reduce the costs related to the disposal of old pavements, the installation of new pavements, and other construction expenses compared to the costs related to the conventional method, even though the expenses for the backfill materials could increase due to the higher production costs of CLSMs than soil. In addition, there is a need to investigate its field applicability in order to evaluate the precise costs, maintenance, and long-term stabilities after installation. Full article
Show Figures

Figure 1

17 pages, 5468 KiB  
Article
The Influence of Fiber on the Mechanical Properties of Controllable Low-Strength Materials
by Yafeng Qian and Mingyang Jiang
Materials 2023, 16(15), 5287; https://doi.org/10.3390/ma16155287 - 27 Jul 2023
Cited by 5 | Viewed by 1407
Abstract
Numerous studies have been conducted on fiber-reinforced concrete; however, comparative investigations specifically focusing on the utilization of fibers in CLSM remain limited. In this study, we conducted a systematic investigation into the mechanical properties of controlled low-strength material (CLSM) by manipulating the length [...] Read more.
Numerous studies have been conducted on fiber-reinforced concrete; however, comparative investigations specifically focusing on the utilization of fibers in CLSM remain limited. In this study, we conducted a systematic investigation into the mechanical properties of controlled low-strength material (CLSM) by manipulating the length and doping amount of fibers as control variables. The 7-day compressive strength (7d-UCS), 28-day compressive strength (28d-UCS), and 28-day splitting strength of CLSM were employed as indicators to evaluate the material’s performance. Based on our comprehensive analysis, the following conclusions were drawn: (1) A positive correlation was observed between fiber length and material strength within the range of 0–6 mm, while conversely, a negative correlation was evident. Similarly, when the fiber doping was within the range of 0–0.3%, a positive correlation was identified between material strength and fiber doping. However, the strength of CLSM decreased when fiber doping exceeded 0.3%. (2) SEM and PCAS analyses provided further confirmation that the incorporation of fibers effectively reduced the porosity of the material by filling internal pores and interacting with hydration products, thereby forming a mesh structure. Overall, this study offers valuable insights into the manipulation of fiber length and doping amount to optimize the mechanical properties of CLSM. The findings have important implications for the practical application of CLSM, particularly in terms of enhancing its strength through fiber incorporation. Full article
Show Figures

Figure 1

12 pages, 3810 KiB  
Article
Utilization of Fly Ash and Red Mud in Soil-Based Controlled Low Strength Materials
by Xianghui Kong, Gaoqiang Wang, Shu Rong, Yunpeng Liang, Mengmeng Liu and Yanhao Zhang
Coatings 2023, 13(5), 893; https://doi.org/10.3390/coatings13050893 - 9 May 2023
Cited by 9 | Viewed by 2292
Abstract
To reduce the harm caused by industrial solid waste to the environment, and solve the problem of excavated soil disposal in buried pipeline management projects, this study proposes a method to produce soil-based controlled low strength materials (CLSM) by using industrial solid wastes [...] Read more.
To reduce the harm caused by industrial solid waste to the environment, and solve the problem of excavated soil disposal in buried pipeline management projects, this study proposes a method to produce soil-based controlled low strength materials (CLSM) by using industrial solid wastes (including fly ash and red mud) as partial replacements for cement. The properties of CLSM were characterized in terms of flowability, unconfined compressive strength, phase composition and microstructure. The test results showed that fly ash could significantly improve the flowability of CLSM, while red mud had more advantages for the strength development. When 20% fly ash and 30% red mud were combined to replace cement, the fluidity of CLSM was 248 mm, and the unconfined compressive strength (UCS) at 3, 7 and 28 days was 1.08, 1.49 and 3.77 MPa, respectively. The hydration products of CLSM were mainly calcium silicate hydrate gels, ettringite and calcite. Fly ash provided nucleation sites for cement hydration, while the alkali excitation of red mud promoted the dissolution of SiO2 and Al2O3 in fly ash. The filling and gelation of hydration products make the microstructure dense, which improves the mechanical properties of the mixture. Full article
(This article belongs to the Special Issue Surface Engineering and Mechanical Properties of Building Materials)
Show Figures

Figure 1

16 pages, 3363 KiB  
Article
Study on the Utilization of Waste Thermoset Glass Fiber-Reinforced Polymer in Normal Strength Concrete and Controlled Low Strength Material
by Yeou-Fong Li, Yi-Wei Hsu, Jin-Yuan Syu, Bian-Yu Chen and Bo Song
Materials 2023, 16(9), 3552; https://doi.org/10.3390/ma16093552 - 5 May 2023
Cited by 8 | Viewed by 2405
Abstract
Thermoset glass fiber-reinforced polymers (GFRP) have been widely used in manufacturing and construction for nearly half a century, but the large amount of waste produced by this material is difficult to dispose of. In an effort to address this issue, this research investigates [...] Read more.
Thermoset glass fiber-reinforced polymers (GFRP) have been widely used in manufacturing and construction for nearly half a century, but the large amount of waste produced by this material is difficult to dispose of. In an effort to address this issue, this research investigates the reuse of thermoset GFRP waste in normal strength concrete (NSC) and controlled low-strength materials (CLSM). The mechanical performance and workability of the resulting concrete were also evaluated. To prepare the concrete specimens, the thermoset GFRP waste was first pulverized into granular pieces, which were then mixed with cement, fly ash, and water to form cylindrical concrete specimens. The results showed that when the proportion of thermoset GFRP waste aggregate in the concrete increased, the compressive strengths of NSC and CLSM would decrease. However, when incorporating 5% GFRP waste into CLSM, the compressive strength was 7% higher than concrete without GFRP. However, the workability of CLSM could be improved to meet engineering standards by adding an appropriate amount of superplasticizer. This finding suggests that the use of various combinations of proportions in the mixture during production could allow for the production of CLSM with different compressive strength needs. In addition, the use of recycled thermoset GFRP waste as a new aggregate replacement for traditional aggregates in CLSM was found to be a more sustainable alternative to the current CLSM combinations used in the market. Full article
(This article belongs to the Special Issue Strengthening, Repair, and Retrofit of Reinforced Concrete)
Show Figures

Figure 1

Back to TopTop