Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = contactless evaporation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4108 KiB  
Article
Modeling and Analysis of Contactless Solar Evaporation for Scalable Application
by Siyang Zheng, Jie Yu and Zhenyuan Xu
Appl. Sci. 2023, 13(6), 4052; https://doi.org/10.3390/app13064052 - 22 Mar 2023
Cited by 3 | Viewed by 2806
Abstract
Zero-liquid discharge wastewater treatment driven by sunlight shows potential to minimize its environmental impact by producing solid-only waste from solar energy. To overcome the key barrier of solar absorber contamination, solar-driven contactless evaporation (SCE) has been proposed. However, only a small-scale laboratory device [...] Read more.
Zero-liquid discharge wastewater treatment driven by sunlight shows potential to minimize its environmental impact by producing solid-only waste from solar energy. To overcome the key barrier of solar absorber contamination, solar-driven contactless evaporation (SCE) has been proposed. However, only a small-scale laboratory device has been studied, which cannot support its scalable application. To analyze the potential of SCE, it is essential to understand the conjugated heat and mass transfer under a scalable application scenario. In this study, a comprehensive model of SCE is developed, which is validated by the laboratory evaporation test and applied to scalable evaporation scenario. Results showed that the scalable evaporation (0.313 kg·m−2·h−1) could obtain higher evaporation rate than the laboratory evaporation (0.139 kg·m−2·h−1) due to suppressed heat losses from the sidewalls. If the design parameters are finely tuned and thermal insulation are properly applied, the evaporation rate could be further enhanced to 0.797 kg·m−2·h−1, indicating a 473.3% performance enhancement than the laboratory SCE. The modelling framework and understanding are expected to pave a way for the further improvement and scalable application of SCE. Full article
(This article belongs to the Special Issue Feature Papers in Section 'Applied Thermal Engineering')
Show Figures

Figure 1

15 pages, 5190 KiB  
Article
A Novel and Non-Invasive Approach to Evaluating Soil Moisture without Soil Disturbances: Contactless Ultrasonic System
by Dong Kook Woo, Wonseok Do, Jinyoung Hong and Hajin Choi
Sensors 2022, 22(19), 7450; https://doi.org/10.3390/s22197450 - 30 Sep 2022
Cited by 11 | Viewed by 4093
Abstract
Soil moisture has been considered a key variable in governing the terrestrial ecosystem. However, it is challenging to preserve indigenous soil characteristics using conventional soil moisture monitoring methods that require maximum soil contacts. To overcome this issue, we developed a non-destructive method of [...] Read more.
Soil moisture has been considered a key variable in governing the terrestrial ecosystem. However, it is challenging to preserve indigenous soil characteristics using conventional soil moisture monitoring methods that require maximum soil contacts. To overcome this issue, we developed a non-destructive method of evaluating soil moisture using a contactless ultrasonic system. This system was designed to measure leaky Rayleigh waves at the air–soil joint-half space. The influences of soil moisture on leaky Rayleigh waves were explored under sand, silt, and clay in a controlled experimental design. Our results showed that there were strong relationships between the energy and amplitude of leaky Rayleigh waves and soil moisture for all three soil cases. These results can be explained by reduced soil strengths during evaporation processes for coarse soil particles as opposed to fine soil particles. To evaluate soil moisture based on the dynamic parameters and wave properties obtained from the observed leaky Rayleigh waves, we used the random forest model. The accuracy of predicted soil moisture was exceptional for test data sets under all soil types (R2 ≥ 0.98, RMSE ≤ 0.0089 m3 m3). That is, our study demonstrated that the leaky Rayleigh waves had great potential to continuously assess soil moisture variations without soil disturbances. Full article
Show Figures

Figure 1

12 pages, 2692 KiB  
Communication
Marker-Free, Molecule Sensitive Mapping of Disturbed Falling Fluid Films Using Raman Imaging
by Marcel Nachtmann, Daniel Feger, Sebastian Sold, Felix Wühler, Stephan Scholl and Matthias Rädle
Sensors 2022, 22(11), 4086; https://doi.org/10.3390/s22114086 - 27 May 2022
Cited by 3 | Viewed by 2156
Abstract
Technical liquid flow films are the basic arrangement for gas fluid transitions of all kinds and are the basis of many chemical processes, such as columns, evaporators, dryers, and different other kinds of fluid/fluid separation units. This publication presents a new method for [...] Read more.
Technical liquid flow films are the basic arrangement for gas fluid transitions of all kinds and are the basis of many chemical processes, such as columns, evaporators, dryers, and different other kinds of fluid/fluid separation units. This publication presents a new method for molecule sensitive, non-contact, and marker-free localized concentration mapping in vertical falling films. Using Raman spectroscopy, no label or marker is needed for the detection of the local composition in liquid mixtures. In the presented cases, the film mapping of sodium sulfate in water on a plain surface as well as an added artificial streaming disruptor with the shape of a small pyramid is scanned in three dimensions. The results show, as a prove of concept, a clear detectable spectroscopic difference between air, back plate, and sodium sulfate for every local point in all three dimensions. In conclusion, contactless Raman scanning on falling films for liquid mapping is realizable without any mechanical film interaction caused by the measuring probe. Surface gloss or optical reflections from a metallic back plate are suppressed by using only inelastic light scattering and the mathematical removal of background noise. Full article
(This article belongs to the Special Issue Scattering-Based Techniques for Sensing Applications)
Show Figures

Figure 1

17 pages, 6752 KiB  
Article
Mathematical Modeling of Induction Heating of Waveguide Path Assemblies during Induction Soldering
by Vadim Tynchenko, Sergei Kurashkin, Valeriya Tynchenko, Vladimir Bukhtoyarov, Vladislav Kukartsev, Roman Sergienko, Viktor Kukartsev and Kirill Bashmur
Metals 2021, 11(5), 697; https://doi.org/10.3390/met11050697 - 24 Apr 2021
Cited by 15 | Viewed by 2523
Abstract
The waveguides used in spacecraft antenna feeders are often assembled using external couplers or flanges subject to further welding or soldering. Making permanent joints by means of induction heating has proven to be the best solution in this context. However, several physical phenomena [...] Read more.
The waveguides used in spacecraft antenna feeders are often assembled using external couplers or flanges subject to further welding or soldering. Making permanent joints by means of induction heating has proven to be the best solution in this context. However, several physical phenomena observed in the heating zone complicate any effort to control the process of making a permanent joint by induction heating; these phenomena include flux evaporation and changes in the emissivity of the material. These processes make it difficult to measure the temperature of the heating zone by means of contactless temperature sensors. Meanwhile, contact sensors are not an option due to the high requirements regarding surface quality. Besides, such sensors take a large amount of time and human involvement to install. Thus, it is a relevant undertaking to develop mathematical models for each waveguide assembly component as well as for the entire waveguide assembly. The proposed mathematical models have been tested by experiments in kind, which have shown a great degree of consistency between model-derived estimates and experimental data. The paper also shows how to use the proposed models to test and calibrate the process of making an aluminum-alloy rectangular tube flange waveguide by induction soldering. The Russian software, SimInTech, was used in this research as the modeling environment. The approach proposed herein can significantly lower the labor and material costs of calibrating and testing the process of the induction soldering of waveguides, whether the goal is to adjust the existing process or to implement a new configuration that uses different dimensions or materials. Full article
(This article belongs to the Special Issue Material Modeling in Multiphysics Simulation)
Show Figures

Figure 1

10 pages, 1607 KiB  
Article
Conductivity Extraction Using a 180 GHz Quasi-Optical Resonator for Conductive Thin Film Deposited on Conductive Substrate
by Ming Ye, Xiao-Long Zhao, Wei-Da Li, Yu Zhou, Jia-Yi Chen and Yong-Ning He
Materials 2020, 13(22), 5260; https://doi.org/10.3390/ma13225260 - 20 Nov 2020
Cited by 1 | Viewed by 1979
Abstract
Measurement of electrical conductivity of conductive thin film deposited on a conductive substrate is important and challenging. An effective conductivity model was constructed for a bilayer structure to extract thin film conductivity from the measured Q-factor of a quasi-optical resonator. As a demonstration, [...] Read more.
Measurement of electrical conductivity of conductive thin film deposited on a conductive substrate is important and challenging. An effective conductivity model was constructed for a bilayer structure to extract thin film conductivity from the measured Q-factor of a quasi-optical resonator. As a demonstration, aluminium films with thickness of 100 nm were evaporated on four silicon wafers whose conductivity ranges from ~101 to ~105 S/m (thus, the proposed method can be verified for a substrate with a wide range of conductivity). Measurement results at ~180 GHz show that average conductivities are 1.66 × 107 S/m (which agrees well with direct current measurements) with 6% standard deviation. The proposed method provides a contactless conductivity evaluation method for conductive thin film deposited on conductive substrate which cannot be achieved by the existing microwave resonant method. Full article
Show Figures

Figure 1

14 pages, 4861 KiB  
Article
Technique and Circuit for Contactless Readout of Piezoelectric MEMS Resonator Sensors
by Marco Baù, Marco Ferrari, Habiba Begum, Abid Ali, Joshua E.-Y. Lee and Vittorio Ferrari
Sensors 2020, 20(12), 3483; https://doi.org/10.3390/s20123483 - 19 Jun 2020
Cited by 6 | Viewed by 4686
Abstract
A technique and electronic circuit for contactless electromagnetic interrogation of piezoelectric micro-electromechanical system (MEMS) resonator sensors are proposed. The adopted resonator is an aluminum-nitride (AlN) thin-film piezoelectric-on-silicon (TPoS) disk vibrating in radial contour mode at about 6.3 MHz. The MEMS resonator is operated [...] Read more.
A technique and electronic circuit for contactless electromagnetic interrogation of piezoelectric micro-electromechanical system (MEMS) resonator sensors are proposed. The adopted resonator is an aluminum-nitride (AlN) thin-film piezoelectric-on-silicon (TPoS) disk vibrating in radial contour mode at about 6.3 MHz. The MEMS resonator is operated in one-port configuration and it is connected to a spiral coil, forming the sensor unit. A proximate electronic interrogation unit is electromagnetically coupled through a readout coil to the sensor unit. The proposed technique exploits interleaved excitation and detection phases of the MEMS resonator. A tailored electronic circuit manages the periodic switching between the excitation phase, where it generates the excitation signal driving the readout coil, and the detection phase, where it senses the transient decaying response of the resonator by measuring through a high-impedance amplifier the voltage induced back across the readout coil. This approach advantageously ensures that the readout frequency of the MEMS resonator is first order independent of the interrogation distance between the readout and sensor coils. The reported experimental results show successful contactless readout of the MEMS resonator independently from the interrogation distance over a range of 12 mm, and the application as a resonant sensor for ambient temperature and as a resonant acoustic-load sensor to detect and track the deposition and evaporation processes of water microdroplets on the MEMS resonator surface. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors Section 2020)
Show Figures

Figure 1

9 pages, 2418 KiB  
Article
Coalescence Dynamics of Acoustically Levitated Droplets
by Koji Hasegawa, Ayumu Watanabe, Akiko Kaneko and Yutaka Abe
Micromachines 2020, 11(4), 343; https://doi.org/10.3390/mi11040343 - 26 Mar 2020
Cited by 24 | Viewed by 4993
Abstract
The contactless coalescence of a droplet is of paramount importance for physical and industrial applications. This paper describes a coalescence method to be used mid-air via acoustic levitation using an ultrasonic phased array system. Acoustic levitation using ultrasonic phased arrays provides promising lab-on-a-drop [...] Read more.
The contactless coalescence of a droplet is of paramount importance for physical and industrial applications. This paper describes a coalescence method to be used mid-air via acoustic levitation using an ultrasonic phased array system. Acoustic levitation using ultrasonic phased arrays provides promising lab-on-a-drop applications, such as transportation, coalescence, mixing, separation, evaporation, and extraction in a continuous operation. The mechanism of droplet coalescence in mid-air may be better understood by experimentally and numerically exploring the droplet dynamics immediately before the coalescence. In this study, water droplets were experimentally levitated, transported, and coalesced by controlled acoustic fields. We observed that the edges of droplets deformed and attracted each other immediately before the coalescence. Through image processing, the radii of curvature of the droplets were quantified and the pressure difference between the inside and outside a droplet was simulated to obtain the pressure and velocity information on the droplet’s surface. The results revealed that the sound pressure acting on the droplet clearly decreased before the impact of the droplets. This pressure on the droplets was quantitatively analyzed from the experimental data. Our experimental and numerical results provide deeper physical insights into contactless droplet manipulation for futuristic lab-on-a-drop applications. Full article
(This article belongs to the Special Issue Acoustofluidics)
Show Figures

Figure 1

13 pages, 521 KiB  
Article
Contactless Mechanical Components: Gears, Torque Limiters and Bearings
by Jose Luis Perez-Diaz, Efren Diez-Jimenez, Ignacio Valiente-Blanco, Cristian Cristache, Marco-Antonio Alvarez-Valenzuela and Juan Sanchez-Garcia-Casarrubios
Machines 2014, 2(4), 312-324; https://doi.org/10.3390/machines2040312 - 18 Dec 2014
Cited by 15 | Viewed by 10945
Abstract
Contactless mechanical components are mechanical sets for conversion of torque/speed, whose gears and moving parts do not touch each other, but rather they provide movement with magnets and magnetic materials that exert force from a certain distance. Magneto-mechanical transmission devices have several advantages [...] Read more.
Contactless mechanical components are mechanical sets for conversion of torque/speed, whose gears and moving parts do not touch each other, but rather they provide movement with magnets and magnetic materials that exert force from a certain distance. Magneto-mechanical transmission devices have several advantages over conventional mechanisms: no friction between rotatory elements (no power losses or heat generation by friction so increase of efficiency), no lubrication is needed (oil-free mechanisms and no lubrication auxiliary systems), reduced maintenance (no lubricant so no need of oil replacements), wider operational temperature ranges (no lubricant evaporation or freezing), overload protection (if overload occurs magnet simply slides but no teeth brake), through-wall connection (decoupling of thermal and electrical paths and environmental isolation), larger operative speeds (more efficient operative conditions), ultralow noise and vibrations (no contact no noise generation). All these advantages permit us to foresee in the long term several common industrial applications in which including contactless technology would mean a significant breakthrough for their performance. In this work, we present three configurations of contactless mechanical passive components: magnetic gears, magnetic torque limiters and superconducting magnetic bearings. We summarize the main characteristic and range of applications for each type; we show experimental results of the most recent developments showing their performance. Full article
(This article belongs to the Special Issue Feature Papers)
Show Figures

Figure 1

Back to TopTop