Conductivity Extraction Using a 180 GHz Quasi-Optical Resonator for Conductive Thin Film Deposited on Conductive Substrate
Abstract
1. Introduction
2. Theory of Measurement Method
3. Experiment and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Li, S.; He, Z.; Ke, Y.; Guo, J.; Cheng, T.; Gong, T.; Lin, Y.; Liu, Z.; Huang, W.; Zhang, X. Ultra-sensitive self-powered photodetector based on vertical MoTe2/MoS2 heterostructure. Appl. Phys. Express 2019, 13, 015007. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Qin, S.; Xu, Y.; Zhang, R.; Wang, F. Graphene-carbon nanotube hybrid films for high-performance flexible photodetectors. Nano Res. 2016, 10, 1880–1887. [Google Scholar] [CrossRef]
- Zhang, T.-F.; Li, Z.-P.; Wang, J.-Z.; Kong, W.-Y.; Wu, G.-A.; Zheng, Y.-Z.; Zhao, Y.-W.; Yao, E.-X.; Zhuang, N.-X.; Luo, L.-B. Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction. Sci. Rep. 2016, 6, 38569. [Google Scholar] [CrossRef] [PubMed]
- Wu, A.-Q.; Wang, W.-Q.; Zhan, H.-B.; Cao, L.-A.; Ye, X.-L.; Zheng, J.-J.; Kumar, P.N.; Chiranjeevulu, K.; Deng, W.-H.; Wang, G.-E.; et al. Layer-by-layer assembled dual-ligand conductive MOF nano-films with modulated chemiresistive sensitivity and selectivity. Nano Res. 2020, 1–6. [Google Scholar] [CrossRef]
- Pham, G.T.; Park, Y.-B.; Liang, Z.; Zhang, C.; Wang, B. Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing. Compos. Part B Eng. 2008, 39, 209–216. [Google Scholar] [CrossRef]
- Sahu, P.K.; Pandey, R.K.; Dwivedi, R.; Mishra, V.N.; Prakash, R. Polymer/Graphene oxide nanocomposite thin film for NO2 sensor: An in situ investigation of electronic, morphological, structural, and spectroscopic properties. Sci. Rep. 2020, 10, 2981. [Google Scholar] [CrossRef]
- Lee, M.-H.; Collier, R. Sheet Resistance Measurement of Thin Metallic Films and Stripes at Both 130 GHz and DC. IEEE Trans. Instrum. Meas. 2005, 54, 2412–2415. [Google Scholar] [CrossRef]
- Li, S.; Anwar, S.; Lu, W.; Hang, Z.H.; Hou, B.; Shen, M.; Wang, C.-H. Microwave absorptions of ultrathin conductive films and designs of frequency-independent ultrathin absorbers. AIP Adv. 2014, 4, 017130. [Google Scholar] [CrossRef]
- Green, M.; Liu, Z.; Xiang, P.; Liu, Y.; Zhou, M.; Tan, X.; Huang, F.; Liu, L.; Chen, X. Doped, conductive SiO2 nanoparticles for large microwave absorption. Light. Sci. Appl. 2018, 7, 1–9. [Google Scholar] [CrossRef]
- Shrivas, K.; Ghosale, A.; Bajpai, P.; Kant, T.; Dewangan, K.; Shankar, R. Advances in flexible electronics and electrochemical sensors using conducting nanomaterials: A review. Microchem. J. 2020, 156, 104944. [Google Scholar] [CrossRef]
- Kamyshny, A.; Magdassi, S. Conductive Nanomaterials for Printed Electronics. Small 2014, 10, 3515–3535. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, P.; Lee, H.; Lee, D.; Lee, S.S.; Ko, S.H. Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 2012, 4, 6408–6414. [Google Scholar] [CrossRef] [PubMed]
- Suss, J.; Berlinger, W.; Portis, A.; Müller, K.; Jeanneret, B.; Martinoli, P. Anisotropic microwave absorption and dc resistance in magnetic fields of granular superconducting aluminum films. Solid State Commun. 1989, 71, 929–933. [Google Scholar] [CrossRef]
- Tamir, I.; Benyamini, A.; Telford, E.J.; Gorniaczyk, F.; Doron, A.; Levinson, T.; Wang, D.; Gay, F.; Sacépé, B.; Hone, J.; et al. Sensitivity of the superconducting state in thin films. Sci. Adv. 2019, 5, eaau3826. [Google Scholar] [CrossRef]
- Dürrschnabel, M.; Aabdin, Z.; Bauer, M.; Semerad, R.; Prusseit, W.; Eibl, O. DyBa2Cu3O7−xsuperconducting coated conductors with critical currents exceeding 1000 A cm−1. Supercond. Sci. Technol. 2012, 25. [Google Scholar] [CrossRef]
- Mwema, F.; Akinlabi, E.; Oladijo, O. Microstructure and surface profiling study on the influence of substrate type on sputtered aluminum thin films. Mater. Today Proc. 2020, 26, 1496–1499. [Google Scholar] [CrossRef]
- Frank, O.; Vejpravova, J.P.; Holy, V.; Kavan, L.; Kalbac, M. Interaction between graphene and copper substrate: The role of lattice orientation. Carbon 2014, 68, 440–451. [Google Scholar] [CrossRef]
- Cao, M.; Zhang, X.-S.; Liu, W.-H.; Wang, H.; Li, Y. Secondary electron emission of graphene-coated copper. Diam. Relat. Mater. 2017, 73, 199–203. [Google Scholar] [CrossRef]
- Izumi, T.; Shiohara, Y. R&D of coated conductors for applications in Japan. Phys. C Supercond. 2010, 470, 967–970. [Google Scholar] [CrossRef]
- Qiu, H.; Wang, F.; Wu, P.; Pan, L.; Li, L.; Xiong, L.; Tian, Y. Effect of deposition rate on structural and electrical properties of Al films deposited on glass by electron beam evaporation. Thin Solid Films 2002, 414, 150–153. [Google Scholar] [CrossRef]
- Mayadas, A.F. Intrinsic Resistivity and Electron Mean Free Path in Aluminum Films. J. Appl. Phys. 1968, 39, 4241. [Google Scholar] [CrossRef]
- Bordo, K.; Rubahn, H.-G. Effect of Deposition Rate on Structure and Surface Morphology of Thin Evaporated Al Films on Dielectrics and Semiconductors. Mater. Sci. 2012, 18, 313–317. [Google Scholar] [CrossRef]
- Brown, M.A.C.S.; Jakeman, E. Theory of the four-point probe technique as applied to the measurement of the conductivity of thin layers on conducting substrates. Br. J. Appl. Phys. 1966, 17, 1143–1148. [Google Scholar] [CrossRef]
- MacKenzie, D.M.A.; Kalhauge, K.G.; Whelan, P.R.; Østergaard, F.W.; Pasternak, I.; Strupinski, W.; Bøggild, P.; Jepsen, P.U.; Petersen, D.H. Wafer-scale graphene quality assessment using micro four-point probe mapping. Nanotechnology 2020, 31, 225709. [Google Scholar] [CrossRef] [PubMed]
- Folkersma, S.; Bogdanowicz, J.; Petersen, D.H.; Ehansen, O.; Henrichsen, H.H.; Nielsen, P.F.; Shiv, L.; Vandervorst, W. Electrical Contact Formation in Micro Four-Point Probe Measurements. Phys. Status Solidi 2019, 217. [Google Scholar] [CrossRef]
- Nelyub, V.A. Technologies of Metallization of Carbon Fabric and the Properties of the Related Carbon Fiber Reinforced Plastics. Russ. Met. Metally 2018, 2018, 1199–1201. [Google Scholar] [CrossRef]
- Card, H. Aluminum—Silicon Schottky barriers and ohmic contacts in integrated circuits. IEEE Trans. Electron Devices 1976, 23, 538–544. [Google Scholar] [CrossRef]
- Hara, T.; Enomoto, S.; Ohtsuka, N.; Shima, S. Barrier Effects of Tungsten Infer-Layer for Aluminum Diffusion in Aluminum/Silicon Ohmic-Contact System. Jpn. J. Appl. Phys. 1985, 24, 828–831. [Google Scholar] [CrossRef]
- Chen, Y.-Y.; Juang, J.-Y. Finite element analysis and equivalent parallel-resistance model for conductive multilayer thin films. Meas. Sci. Technol. 2016, 27, 074006. [Google Scholar] [CrossRef]
- Yang, H.-C.; Tai, C.-C. Pulsed eddy-current measurement of a conducting coating on a magnetic metal plate. Meas. Sci. Technol. 2002, 13, 1259–1265. [Google Scholar] [CrossRef]
- Tohmyoh, H.; Ishikawa, S.; Muraoka, M. Non-contact evaluation of the electrical conductivity of thin metallic films by eddy current microscopy. Surf. Interface Anal. 2012, 44, 1294–1298. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, D.; Lai, C.; Tian, G. Quantitative Approach for Thickness and Conductivity Measurement of Monolayer Coating by Dual-Frequency Eddy Current Technique. IEEE Trans. Instrum. Meas. 2017, 66, 1874–1882. [Google Scholar] [CrossRef]
- Pan, Y.-L.; Tai, C.-C. Thickness and Conductivity Analysis of Molybdenum Thin Film in CIGS Solar Cells Using Resonant Electromagnetic Testing Method. IEEE Trans. Magn. 2012, 48, 347–350. [Google Scholar] [CrossRef]
- Wang, X.; Diaz-Rubio, A.; Tretyakov, S.A. An Accurate Method for Measuring the Sheet Impedance of Thin Conductive Films at Microwave and Millimeter-Wave Frequencies. IEEE Trans. Microw. Theory Tech. 2017, 65, 5009–5018. [Google Scholar] [CrossRef]
- Ye, M.; Wang, L.; He, Y.; Daneshmand, M. In Situ Test of Thickness and Sheet Resistance of Conductive Nanomaterial Using Microwave Cavity. IEEE Microw. Wirel. Components Lett. 2017, 27, 1–3. [Google Scholar] [CrossRef]
- 36Krupka, J. Contactless methods of conductivity and sheet resistance measurement for semiconductors, conductors and superconductors. Meas. Sci. Technol. 2013, 24, 062001. [Google Scholar] [CrossRef]
- Rudd, M.; Baum, T.C.; Ghorbani, K. Determining High-Frequency Conductivity Based on Shielding Effectiveness Measurement Using Rectangular Waveguides. IEEE Trans. Instrum. Meas. 2019, 69, 155–162. [Google Scholar] [CrossRef]
- Layani-Tzadka, M.E.; Krotkov, D.; Tirosh, E.; Markovich, G.; Fleischer, S. Contact-free conductivity probing of metal nanowire films using THz reflection spectroscopy. Nanotechnology 2019, 30, 215702. [Google Scholar] [CrossRef]
- Rigosi, A.F.; Glavin, N.R.; Liu, C.-I.; Yang, Y.; Obrzut, J.; Hill, H.M.; Hu, J.; Lee, H.-Y.; Walker, A.R.H.; Richter, C.A.; et al. Preservation of Surface Conductivity and Dielectric Loss Tangent in Large-Scale, Encapsulated Epitaxial Graphene Measured by Noncontact Microwave Cavity Perturbations. Small 2017, 13, 1700452. [Google Scholar] [CrossRef]
- Reid, O.G.; Moore, D.T.; Li, Z.; Zhao, D.; Yan, Y.; Zhu, K.; Rumbles, G. Quantitative analysis of time-resolved microwave conductivity data. J. Phys. D Appl. Phys. 2017, 50, 493002. [Google Scholar] [CrossRef]
- Choi, W.; Inoue, J.; Tsutsui, Y.; Sakurai, T.; Seki, S. In-situ analysis of microwave conductivity and impedance spectroscopy for evaluation of charge carrier dynamics at interfaces. Appl. Phys. Lett. 2017, 111, 203302. [Google Scholar] [CrossRef]
- Krupka, J. Measurement of the complex permittivity of metal nanoislands and the surface resistance of thin conducting films at microwave frequencies. Meas. Sci. Technol. 2008, 19, 65701. [Google Scholar] [CrossRef]
- Obrzut, J.; Emiroglu, C.; Kirillov, O.; Yang, Y.; Elmquist, R.E. Surface conductance of graphene from non-contact resonant cavity. Measurement 2016, 87, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Hashimshony, D.; Geltner, I.; Cohen, G.; Avitzour, Y.; Zigler, A.; Smith, C. Characterization of the electrical properties and thickness of thin epitaxial semiconductor layers by THz reflection spectroscopy. J. Appl. Phys. 2001, 90, 5778–5781. [Google Scholar] [CrossRef]
- Geltner, I.; Hashimshony, D.; Zigler, A. Detection and electrical characterization of hidden layers using time-domain analysis of terahertz reflections. J. Appl. Phys. 2002, 92, 203–206. [Google Scholar] [CrossRef]
- Lin, H.; Braeuninger-Weimer, P.; Kamboj, V.S.; Jessop, D.S.; Degl’Innocenti, R.; Beere, H.E.; Ritchie, D.A.; Zeitler, J.A.; Hofmann, S. Contactless graphene conductivity mapping on a wide range of substrates with terahertz time-domain reflection spectroscopy. Sci. Rep. 2017, 7, 10625. [Google Scholar] [CrossRef]
- Hempel, H.; Unold, T.; Eichberger, R. Measurement of charge carrier mobilities in thin films on metal substrates by reflection time resolved terahertz spectroscopy. Opt. Express 2017, 25, 17227. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering, 4th ed.; John Wiley& Sons: New York, NY, USA, 2012; p. 29. [Google Scholar]
- Chen, L.F.; Ong, C.K.; Neo, C.P.; Varadan, V.V. Microwave Electronics; Wiley: New York, NY, USA, 2004; p. 242. [Google Scholar]
- Cook, J.D.; Zwart, J.W.; Long, K.J.; Heinen, V.O.; Stankiewicz, N. An experimental apparatus for measuring surface resistance in the submillimeter-wavelength region. Rev. Sci. Instruments 1991, 62, 2480–2485. [Google Scholar] [CrossRef]
- Cui, F.; Iuo, Z.; Ji, F.; Hu, B.J.; Lai, S.I. Quasi Optical Resonator for Measuring Surface Resistance and Its Distribution of High Temperature Superconductor Film. Int. J. Infrared Millim. Waves 1999, 20, 1037–1045. [Google Scholar] [CrossRef]
- Zwart, J.W.; Heinen, V.O.; Long, K.; Stankiewicz, N. Surface resistance measurements at 337 GHz. Int. J. Infrared Millim. Waves 1996, 17, 349–357. [Google Scholar] [CrossRef]
- Krupka, J.; Klinger, M.; Kuhn, M.; Baryanyak, A.; Stiller, M.; Hinken, J.; Modelski, J.W. Surface resistance measurements of HTS films by means of sapphire dielectric resonators. IEEE Trans. Appl. Supercond. 1993, 3, 3043–3048. [Google Scholar] [CrossRef]
- Ristic, S.; Prijić, A.; Prijić, Z. Dependence of static dielectric constant of silicon on resistivity at room temperature. Serbian J. Electr. Eng. 2004, 1, 237–247. [Google Scholar] [CrossRef]
- Varadan, S.K. Estimation of Complex Permittivity of Silicon at 2.45 GHz Microwave Frequency. Master Thesis, Arizona State University, Tempe, AZ, USA, 2014. [Google Scholar]
- Nicol, W. Thickness variation of breakdown field strength in plasma oxidized aluminum films. In Proceedings of the IEEE; Institute of Electrical and Electronics Engineers (IEEE): New York, NY, USA, 1968; Volume 56, pp. 109–110. [Google Scholar]
- Coakley, K.; Splett, J.; Janezic, M.; Kaiser, R. Estimation of Q-factors and resonant frequencies. IEEE Trans. Microw. Theory Tech. 2003, 51, 862–868. [Google Scholar] [CrossRef]
- Yang, B.B.; Katz, S.L.; Willis, K.J.; Weber, M.J.; Knezevic, I.; Hagness, S.C.; Booske, J.H. A High-Q Terahertz Resonator for the Measurement of Electronic Properties of Conductors and Low-Loss Dielectrics. IEEE Trans. Terahertz Sci. Technol. 2012, 2, 449–459. [Google Scholar] [CrossRef][Green Version]
Silicon’s Conductivity (S/m) | Si/Al Sheet Resistance (mΩ/sq) | Al film’s Conductivity | Effective Conductivity | Al film’s Conductivity |
---|---|---|---|---|
20.8 | 616 | 16.2 | 2.25 | 17.7 |
3.03 × 103 | 581 | 17.2 | 2.08 | 16.7 |
3.50 × 104 | 606 | 16.5 | 1.92 | 15.3 |
1.18 × 105 | 285 | 35.1 | 2.48 | 16.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, M.; Zhao, X.-L.; Li, W.-D.; Zhou, Y.; Chen, J.-Y.; He, Y.-N. Conductivity Extraction Using a 180 GHz Quasi-Optical Resonator for Conductive Thin Film Deposited on Conductive Substrate. Materials 2020, 13, 5260. https://doi.org/10.3390/ma13225260
Ye M, Zhao X-L, Li W-D, Zhou Y, Chen J-Y, He Y-N. Conductivity Extraction Using a 180 GHz Quasi-Optical Resonator for Conductive Thin Film Deposited on Conductive Substrate. Materials. 2020; 13(22):5260. https://doi.org/10.3390/ma13225260
Chicago/Turabian StyleYe, Ming, Xiao-Long Zhao, Wei-Da Li, Yu Zhou, Jia-Yi Chen, and Yong-Ning He. 2020. "Conductivity Extraction Using a 180 GHz Quasi-Optical Resonator for Conductive Thin Film Deposited on Conductive Substrate" Materials 13, no. 22: 5260. https://doi.org/10.3390/ma13225260
APA StyleYe, M., Zhao, X.-L., Li, W.-D., Zhou, Y., Chen, J.-Y., & He, Y.-N. (2020). Conductivity Extraction Using a 180 GHz Quasi-Optical Resonator for Conductive Thin Film Deposited on Conductive Substrate. Materials, 13(22), 5260. https://doi.org/10.3390/ma13225260