Under the strategy of Healthy China, students’ physical health status not only affects their future life and studies but also influences social progress and development. By monitoring and measuring the daily PA levels of Chinese students over a week, this study aimed to fully understand the current PA status of students at different times, providing data support for improving students’ PA levels and physical health. (1) Wearable fitness trackers have advantages such as low cost, portable wearability, and intuitive test data. By exploring the differences between wearable devices and PA testing instruments, this study provides reference data to improve the accuracy of wearable devices and promote the use of fitness trackers instead of triaxial accelerometers, thereby advancing scientific research on PA and the development of mass fitness. A total of 261 students (147 males; 114 females) were randomly selected and wore both the Actigraph GT3X+ triaxial accelerometer and Huawei smart fitness trackers simultaneously to monitor their daily PA levels, energy metabolism, sedentary behavior, and step counts from the trackers over a week. The students’ PA status and living habits were also understood through literature reviews and questionnaire surveys. The validity of the smart fitness trackers was quantitatively analyzed using ActiLife software 6 Data Analysis Software and traditional analysis methods such as MedCal. Paired sample Wilcoxon signed-rank tests and mean absolute error ratio tests were used to assess the validity of the smart fitness trackers relative to the Actigraph GT3X+ triaxial accelerometer. A linear regression model was established to predict the step counts of the Actigraph GT3X+ triaxial accelerometer based on the step counts from the smart fitness trackers, aiming to improve the accuracy of human motion measurement by smart fitness trackers. There were significant differences in moderate-to-high-intensity PA time, energy expenditure, metabolic equivalents, and step counts between males and females (
p < 0.01), with females having higher values than males in both moderate-to-high-intensity PA time and step counts. Sedentary behavior showed significant differences only on weekdays between males and females (
p < 0.05), with females engaging in less sedentary behavior than males. (2) There was a significant difference in sedentary time between weekdays and weekends for students (
p < 0.05), with sedentary time being higher on weekends than on weekdays. (3) Compared with weekends, female students had significantly different moderate-to-high-intensity PA time and sedentary time on weekdays (
p < 0.01), while no significant differences were observed for male students. (4) Under free-living conditions, the average daily step count monitored by the smart fitness trackers was lower than that measured by the Actigraph GT3X+ triaxial accelerometer, with a significant difference (
p < 0.01), but both showed a positive correlation (r = 0.727). (5) The linear regression equation established between the step counts monitored by the smart fitness trackers and those by the Actigraph GT3X+ triaxial accelerometer was y = 3677.3157 + 0.6069x. The equation’s R
2 = 0.625, with an F-test value of
p < 0.001, indicating a high degree of fit between the step counts recorded by the Huawei fitness tracker and those recorded by the triaxial accelerometer. The
t-test results for the regression coefficient and constant term were t = 26.4410 and
p < 0.01, suggesting that both were meaningful. The tested students were able to meet the recommended total amount of moderate-intensity PA for 150 min per week or high-intensity PA for 75 min per week according to the “Chinese Adult PA Guidelines”, as well as the recommended daily step count of more than 6000 steps per day according to the “Chinese Dietary Guidelines”. (2) Female students had significantly more moderate-to-high-intensity PA time than male students, but lower energy expenditure and metabolic equivalents, which may have been related to their lifestyle and types of exercise. On weekends, female students significantly increased their moderate-to-high-intensity PA time compared with males but also showed increased sedentary time exceeding that of males; further investigation is needed to understand the reasons behind these findings. (3) The step counts monitored by the Huawei smart fitness trackers correlated with those measured by the Actigraph GT3X+ triaxial accelerometer, but the step counts from the fitness trackers were lower, indicating that the fitness trackers underestimated PA levels. (4) There was a linear relationship between the Huawei smart fitness trackers and the Actigraph GT3X+ triaxial accelerometer. By using the step counts monitored by the Huawei fitness trackers and the regression equation, it was possible to estimate the activity counts from the Actigraph GT3X+ triaxial accelerometer. Replacing the Actigraph GT3X+ triaxial accelerometer with Huawei smart fitness trackers for step count monitoring significantly reduces testing costs while providing consumers with intuitive data.
Full article