Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = constructed soil rapid infiltration system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1895 KB  
Article
Stability of Loess Slopes Under Different Plant Root Densities and Soil Moisture Contents
by Lei Shi, Liangyan Yang, Biao Peng, Zhenzhen Huang, Dongwen Hua, Zenghui Sun and Lirong He
Water 2024, 16(24), 3558; https://doi.org/10.3390/w16243558 - 10 Dec 2024
Cited by 1 | Viewed by 1446
Abstract
This study conducted an in-depth analysis of the landslide problem in the loess hill and gully area in northern Shaanxi Province, selecting the loess landslide site in Quchaigou, Ganquan County, Yan’an City, as the object to assess the stability of loess slopes under [...] Read more.
This study conducted an in-depth analysis of the landslide problem in the loess hill and gully area in northern Shaanxi Province, selecting the loess landslide site in Quchaigou, Ganquan County, Yan’an City, as the object to assess the stability of loess slopes under the conditions of different plant root densities and soil moisture contents through field investigation, physical mechanics experiments and numerical simulation of the GeoStudio model. Periploca sepium, a dominant species in the plant community, was selected to simulate the stability of loess slope soils under different root densities and soil water contents. The analysis showed that the stability coefficient of Periploca sepium natural soil root density was 1.263, which was a stable condition, but the stability of the stabilized slopes decreased with the increase in soil root density. Under the condition of 10% soil moisture content, the stability coefficient of the slope body is 1.136, which is a basic stable state, but with the increase in soil moisture content, the stability of the stable slope body decreases clearly. The results show that rainfall and human activities are the main triggering factors for loess landslides, and the vegetation root system has a dual role in landslide stability: on the one hand, it increases the soil shear strength, and on the other hand, it may promote water infiltration and reduce the shear strength. In addition, the high water-holding capacity and permeability anisotropy of loess may lead to a rapid increase in soil deadweight under rainfall conditions, increasing the risk of landslides. The results of this study are of great significance for disaster prevention and mitigation and regional planning and construction, and they also provide a reference for landslide studies in similar geological environments. Full article
(This article belongs to the Special Issue Soil Erosion and Soil and Water Conservation)
Show Figures

Figure 1

15 pages, 4056 KB  
Article
Field Investigation of Water Infiltration into a Three-Layer Capillary Barrier Landfill Cover System Using Local Soils and Construction Waste
by Yuedong Wu, Jincheng Ren and Jian Liu
Buildings 2024, 14(1), 139; https://doi.org/10.3390/buildings14010139 - 5 Jan 2024
Cited by 5 | Viewed by 1919
Abstract
In response to the rapid urban expansion and the burgeoning number of landfill sites, managing water infiltration in these areas has become a critical challenge, especially in cities like Shenzhen, Hong Kong, and Singapore where traditional cover materials such as silt, clayey gravel, [...] Read more.
In response to the rapid urban expansion and the burgeoning number of landfill sites, managing water infiltration in these areas has become a critical challenge, especially in cities like Shenzhen, Hong Kong, and Singapore where traditional cover materials such as silt, clayey gravel, and sand are scarce. A three-layer (silt/gravelly sand/clay) capillary barrier cover system has been proposed to address this issue in humid climates. As an alternative to scarce traditional materials, using local soils and construction waste (CW) for this system presents a viable solution. However, the real-world performance of this adapted three-layer system, constructed with local soils and CW under natural rainfall conditions, remains to be fully evaluated. This paper presents a field test evaluating the water infiltration behavior of a three-layer capillary barrier landfill cover system under natural conditions. The tri-layered system is comprised of a 0.6 m loose local unscreened soil layer, covered by a 0.4 m CW layer and topped by a 0.8 m heavily compacted local screened soil layer. Monitoring findings reveal that, during the wet season, infiltration through the top two layers was staved off until the third rainfall, after which these layers retained moisture until 15 September 2016. The fluctuation in pore water pressure in the topmost layers showed each rainfall was contingent not only on the day’s precipitation but also the hydraulic state. Beyond the hydraulic state’s influence, a deeper tensiometer showed resulted in a diminished correlation between the surge in pore water pressure and daily rainfall. This declining correlation with depth can be attributed to the capillary effect and the reduced permeability of the screened soil layer. Rainfall patterns significantly affect percolation, with the combination of a short-duration, intense rainfall and prolonged weak rainfall resulting in a marked increase in percolation. In the foundational screened soil layer, the pore water pressure remained relatively low, with the cumulative percolation over six months (June to December) registering approximately 10 mm. These findings suggest a promising performance of the three-layer capillary barrier cover system, integrating local soils and CW, in the year of the study conducted in a humid environment. Full article
(This article belongs to the Special Issue Research towards the Green and Sustainable Buildings and Cities)
Show Figures

Figure 1

24 pages, 4470 KB  
Article
Enhancing Urban Surface Runoff Conveying System Dimensions through Optimization Using the Non-Dominated Sorting Differential Evolution (NSDE) Metaheuristic Algorithm
by Ahmed Cemiloglu, Licai Zhu, Biyun Chen, Li Lu and Yaser A. Nanehkaran
Water 2023, 15(16), 2927; https://doi.org/10.3390/w15162927 - 14 Aug 2023
Cited by 2 | Viewed by 2359
Abstract
Rapid urban development and increase in construction have significantly altered the surface coverage of cities, resulting in a rise in impervious surfaces such as roofs, streets, and pavements. These changes act as barriers against rainwater infiltration into the soil, leading to a substantial [...] Read more.
Rapid urban development and increase in construction have significantly altered the surface coverage of cities, resulting in a rise in impervious surfaces such as roofs, streets, and pavements. These changes act as barriers against rainwater infiltration into the soil, leading to a substantial increase in surface runoff. Managing surface runoff has become a critical task in civil engineering and urban planning, as it can mitigate damage and provide opportunities for utilizing excess water. However, traditional flood control and guidance systems tend to be extensive and expensive, prompting researchers to explore cost-effective alternatives that consider all design parameters and variables. In this research, we propose an innovative approach that combines the NSDE (non-dominated sorting differential evolution) metaheuristic algorithm as an optimizer with the SWMM (storm water management model) as a simulator. The objective is to design efficient surface runoff collection networks by thoroughly investigating their hydraulic behaviors. This study focuses on the Chitgar watershed in Tehran, Iran, utilizing the SWMM model and NSDE multi-objective metaheuristic algorithm to determine the optimal dimensions of the channel and its intersecting structures. The aim is to minimize costs and reduce water leakage from the network. A comparison is made between the optimized design results and the existing network plan (without any design modifications). The analysis reveals substantial reductions in water leakage for all three design scenarios: a 7.66% reduction when considering only bridges, a 7.35% reduction with only the canal, and an impressive 95.26% reduction when both the canal and bridges are incorporated. These findings demonstrate the superiority of the optimized designs in terms of cost-effectiveness and the efficient management of surface runoff. Full article
(This article belongs to the Special Issue Water, Geohazards, and Artificial Intelligence)
Show Figures

Figure 1

18 pages, 4261 KB  
Article
Impact of Land Use Change Due to Urbanisation on Surface Runoff Using GIS-Based SCS–CN Method: A Case Study of Xiamen City, China
by Sabita Shrestha, Shenghui Cui, Lilai Xu, Lihong Wang, Bikram Manandhar and Shengping Ding
Land 2021, 10(8), 839; https://doi.org/10.3390/land10080839 - 11 Aug 2021
Cited by 67 | Viewed by 8301
Abstract
Rapid urban development results in visible changes in land use due to increase in impervious surfaces from human construction and decrease in pervious areas. Urbanisation influences the hydrological cycle of an area, resulting in less infiltration, higher flood peak, and surface runoff. This [...] Read more.
Rapid urban development results in visible changes in land use due to increase in impervious surfaces from human construction and decrease in pervious areas. Urbanisation influences the hydrological cycle of an area, resulting in less infiltration, higher flood peak, and surface runoff. This study analysed the impact of land use change due to urbanisation on surface runoff, using the geographic information system (GIS)-based soil conservation service curve number (SCS–CN) method, during the period of rapid urban development from 1980 to 2015 in Xiamen, located in south-eastern China. Land use change was analysed from the data obtained by classifying Landsat images from 1980, 1990, 2005, and 2015. Results indicated that farmland decreased the most by 14.01%, while built-up areas increased the most by 15.7%, from 1980 to 2015. Surface runoff was simulated using the GIS-based SCS–CN method for the rainfall return periods of 5, 10, 20, and 50 years. The spatial and temporal variation of runoff was obtained for each land use period. Results indicate that the increase in surface runoff was highest in the period of 1990–2005, with an increase of 10.63%. The effect of urbanisation can be realised from the amount of runoff, contributed by built-up land use type in the study area, that increased from 14.2% to 27.9% with the rise of urban expansion from 1980 to 2015. The relationship between land use and surface runoff showed that the rapid increase in constructed land has significantly influenced the surface runoff of the area. Therefore, the introduction of nature-based solutions such as green infrastructure could be a potential solution for runoff mitigation and reducing urban flood risks in the context of increasing urbanization. Full article
Show Figures

Figure 1

13 pages, 1937 KB  
Article
Treatment of Sewage Using a Constructed Soil Rapid Infiltration System Combined with Pre-Denitrification
by Wenlai Xu, Jinyao Chen, Yue Jian, Zhicheng Pan and Zishen Mou
Int. J. Environ. Res. Public Health 2018, 15(9), 2005; https://doi.org/10.3390/ijerph15092005 - 14 Sep 2018
Cited by 8 | Viewed by 3627
Abstract
The activated sludge process of the anaerobic/oxic (A/O) process has a good denitrification performance because it can make full use of the carbon source in the original sewage, and the denitrification can provide alkalinity for aerobic nitrification. The traditional constructed soil rapid infiltration [...] Read more.
The activated sludge process of the anaerobic/oxic (A/O) process has a good denitrification performance because it can make full use of the carbon source in the original sewage, and the denitrification can provide alkalinity for aerobic nitrification. The traditional constructed soil rapid infiltration (CSRI) system, on the other hand, has a poor nitrogen removal effect. Dividing the traditional CSRI system into two sections, one performs denitrification as an anoxic section, while the other performs nitrification as an aerobic section and is placed after the anoxic section. The nitrification liquid of the effluent from the aerobic section is mixed with the original wastewater and enters the anoxic section for denitrification. We expected that this would be improved by combining CSRI with a pre-denitrification step that would make full use of the carbon source in the original sewage. In a small-scale experimental model, the removal efficiencies of nitrogen, in the form of ammonium, nitrate, and total nitrogen (TN), as well as chemical oxygen demand (COD), were determined. The hydraulic load was varied, while the backflow reflux capacity was kept constant, to determine the effect on the pre-denitrification process. An average removal rate of 95.4% for NH4+-N and 96% for COD could be obtained when a hydraulic load of 80 cm3(cm2·d)−1 and a reflux ratio of 75% were applied. Under these conditions, the average removal rate of TN was 77.4%, which is much higher than what can be typically achieved with conventional CSRI systems. Full article
Show Figures

Figure 1

Back to TopTop