Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = constant-envelope multiplexing (CEM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6745 KiB  
Article
Frequency-Hopping Binary Offset Carrier Modulation with Independent Frequency-Hopping Patterns in Lower and Upper Sidebands
by Yikang Yang, Jiangang Ma, Lingyu Deng and Hengnian Li
Remote Sens. 2024, 16(22), 4151; https://doi.org/10.3390/rs16224151 - 7 Nov 2024
Viewed by 1403
Abstract
To enhance the anti-interference capabilities and increase flexibility in frequency allocation between the lower and upper sidebands of the navigation signal, we introduce frequency-hopping binary offset carrier modulation with independent frequency-hopping patterns in lower and upper sidebands (IFH-BOC). This novel modulation is classified [...] Read more.
To enhance the anti-interference capabilities and increase flexibility in frequency allocation between the lower and upper sidebands of the navigation signal, we introduce frequency-hopping binary offset carrier modulation with independent frequency-hopping patterns in lower and upper sidebands (IFH-BOC). This novel modulation is classified as a constant-envelope multiplexing (CEM) method, with independent frequency-hopping patterns for the lower and upper sidebands, in contrast with frequency-hopping binary offset carrier (FH-BOC) and binary offset carrier (BOC) modulations, which share the same patterns. IFH-BOC represents a generalized modulation that incorporates FH-BOC and BOC, thus retaining their advantages while introducing new characteristics, such as independent frequency-hopping pattern design and flexible spectral splitting. The results indicate that IFH-BOC maintains the same time–frequency characteristics and measurement accuracy as FH-BOC when using identical modulation parameters, yet it demonstrates superior anti-interference performance due to its varied frequency-hopping patterns. Furthermore, IFH-BOC provides enhanced flexibility in spectral splitting compared with BOC modulation, potentially allowing for increased availability of L-band frequencies for satellite navigation. With these benefits, IFH-BOC is poised to be a promising modulation for the signal design of next-generation global navigation satellite systems. Full article
Show Figures

Figure 1

23 pages, 729 KiB  
Article
CCE-OMBOC: A Simple and Efficient Constant-Envelope Technology for Multicarrier Navigation Modulation by Clipping
by Lingyu Deng, Yikang Yang, Xingyou Qian, Jiangang Ma, Yanxiang Feng and Hengnian Li
Remote Sens. 2024, 16(21), 4016; https://doi.org/10.3390/rs16214016 - 29 Oct 2024
Viewed by 817
Abstract
Multicarrier navigation modulation is a trend within next-generation global navigation satellite systems (GNSS) aiming to enhance navigation performance, but it forces amplifiers to work in nonsaturation zones, resulting in low power efficiency. This paper presents constant-envelope multiplexing (CEM) based on clipping to overcome [...] Read more.
Multicarrier navigation modulation is a trend within next-generation global navigation satellite systems (GNSS) aiming to enhance navigation performance, but it forces amplifiers to work in nonsaturation zones, resulting in low power efficiency. This paper presents constant-envelope multiplexing (CEM) based on clipping to overcome the low transmission efficiency of orthogonal multi-binary offset carriers (OMBOCs). The clip constant-envelope OMBOC (CCE-OMBOC) features a hard limit for the original OMBOC signal, and its cross-correlation function (CCF) has a fixed ratio with the CCF of the original OMBOC. Thus, the clipping process has no adverse effect on navigation performance. Additionally, the expression of transmission and multiplexing efficiency is presented according to OMBOC’s amplitude distribution. A low sampling rate is suggested for the CCE-OMBOC, which reduces the cost of signal generation. For OMBOC, the CCE-OMBOC provides multiplexing efficiency comparable to that of constant-envelope multiplexing via intermodulation construction (CEMIC). CCE-OMBOC has a straightforward generation process; in contrast, the complexity of CEMIC rises significantly with increasing subcarriers. Moreover, the CCE-OMBOC is a multicarrier CEM modulation tool that has good tracking performance and excellent compatibility. The greater the number of subcarriers, the more navigation services and the higher the navigation data rate. The CCE-OMBOC can be used in next-generation GNSS and integrated communication and navigation systems. Full article
(This article belongs to the Special Issue Satellite Navigation and Signal Processing (Second Edition))
Show Figures

Figure 1

5 pages, 1501 KiB  
Proceeding Paper
Design of a Signaling Scheme for Three Equal-Power Signals in a New Navigation Satellite System
by Hyoungsoo Lim
Eng. Proc. 2023, 54(1), 3; https://doi.org/10.3390/ENC2023-15469 - 29 Oct 2023
Viewed by 626
Abstract
Design methods are presented for chip pulses and a constant envelope multiplexing (CEM) scheme for a new navigation satellite system in the S band. If we assume three equal-power signals are needed to transmit, the chip pulses of at least two signals can [...] Read more.
Design methods are presented for chip pulses and a constant envelope multiplexing (CEM) scheme for a new navigation satellite system in the S band. If we assume three equal-power signals are needed to transmit, the chip pulses of at least two signals can have two or more sample magnitudes for a high CEM power efficiency. Considering a case with two dual-magnitude signals, we can find the magnitude values for a target efficiency and then design the magnitude and sign patterns. We analyze the interference for all possible chip pulse sets and sorted them according to selected priorities. We also consider spectral separation between two different signal groups for a flexible operation. The design methods and the results provided in this paper can be a good reference for the signal design of a new navigation satellite system. Full article
(This article belongs to the Proceedings of European Navigation Conference ENC 2023)
Show Figures

Figure 1

Back to TopTop