Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = congenital malabsorptive diarrhea

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 551 KiB  
Review
Fructose Metabolism and Its Effect on Glucose-Galactose Malabsorption Patients: A Literature Review
by Nawaf W. Alruwaili and Fahad Alshdayed
Diagnostics 2023, 13(2), 294; https://doi.org/10.3390/diagnostics13020294 - 12 Jan 2023
Cited by 7 | Viewed by 3812
Abstract
Glucose-galactose malabsorption is a rare inherited autosomal recessive genetic defect. A mutation in the glucose sodium-dependent transporter-1 gene will alter the transportation and absorption of glucose and galactose in the intestine. The defect in the SGLT-1 leads to unabsorbed galactose, glucose, and sodium, [...] Read more.
Glucose-galactose malabsorption is a rare inherited autosomal recessive genetic defect. A mutation in the glucose sodium-dependent transporter-1 gene will alter the transportation and absorption of glucose and galactose in the intestine. The defect in the SGLT-1 leads to unabsorbed galactose, glucose, and sodium, which stay in the intestine, leading to dehydration and hyperosmotic diarrhea. Often, glucose-galactose malabsorption patients are highly dependent on fructose, their primary source of carbohydrates. This study aims to investigate all published studies on congenital glucose-galactose malabsorption and fructose malabsorption. One hundred published studies were assessed for eligibility in this study, and thirteen studies were identified and reviewed. Studies showed that high fructose consumption has many health effects and could generate life-threatening complications. None of the published studies included in this review discussed or specified the side effects of fructose consumption as a primary source of carbohydrates in congenital glucose-galactose malabsorption patients. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

22 pages, 14600 KiB  
Article
Loss of Serum Glucocorticoid-Inducible Kinase 1 SGK1 Worsens Malabsorption and Diarrhea in Microvillus Inclusion Disease (MVID)
by Md Kaimul Ahsan, Diego Carlos dos Reis, Andrea Barbieri, Kaelyn D. Sumigray, Timothy Nottoli, Pedro J. Salas and Nadia A. Ameen
J. Clin. Med. 2022, 11(14), 4179; https://doi.org/10.3390/jcm11144179 - 19 Jul 2022
Cited by 4 | Viewed by 2805
Abstract
Microvillus inclusion disease (MVID), a lethal congenital diarrheal disease, results from loss of function mutations in the apical actin motor myosin VB (MYO5B). How loss of MYO5B leads to both malabsorption and fluid secretion is not well understood. Serum glucocorticoid-inducible kinase 1 (SGK1) [...] Read more.
Microvillus inclusion disease (MVID), a lethal congenital diarrheal disease, results from loss of function mutations in the apical actin motor myosin VB (MYO5B). How loss of MYO5B leads to both malabsorption and fluid secretion is not well understood. Serum glucocorticoid-inducible kinase 1 (SGK1) regulates intestinal carbohydrate and ion transporters including cystic fibrosis transmembrane conductance regulator (CFTR). We hypothesized that loss of SGK1 could reduce CFTR fluid secretion and MVID diarrhea. Using CRISPR-Cas9 approaches, we generated R26CreER;MYO5Bf/f conditional single knockout (cMYO5BKO) and R26CreER;MYO5Bf/f;SGK1f/f double knockout (cSGK1/MYO5B-DKO) mice. Tamoxifen-treated cMYO5BKO mice resulted in characteristic features of human MVID including severe diarrhea, microvillus inclusions (MIs) in enterocytes, defective apical traffic, and depolarization of transporters. However, apical CFTR distribution was preserved in crypts and depolarized in villus enterocytes, and CFTR high expresser (CHE) cells were observed. cMYO5BKO mice displayed increased phosphorylation of SGK1, PDK1, and the PDK1 target PKCι in the intestine. Surprisingly, tamoxifen-treated cSGK1/MYO5B-DKO mice displayed more severe diarrhea than cMYO5BKO, with preservation of apical CFTR and CHE cells, greater fecal glucose and reduced SGLT1 and GLUT2 in the intestine. We conclude that loss of SGK1 worsens carbohydrate malabsorption and diarrhea in MVID. Full article
Show Figures

Figure 1

10 pages, 6314 KiB  
Article
Novel Homozygous Inactivating Mutation in the PCSK1 Gene in an Infant with Congenital Malabsorptive Diarrhea
by Laetitia Aerts, Nathalie A. Terry, Nina N. Sainath, Clarivet Torres, Martín G. Martín, Bruno Ramos-Molina and John W. Creemers
Genes 2021, 12(5), 710; https://doi.org/10.3390/genes12050710 - 10 May 2021
Cited by 13 | Viewed by 3443
Abstract
Proprotein convertase 1/3 (PC1/3), encoded by the PCSK1 gene, is expressed in neuronal and (entero)endocrine cell types, where it cleaves and hence activates a number of protein precursors that play a key role in energy homeostasis. Loss-of-function mutations in PCSK1 cause a recessive [...] Read more.
Proprotein convertase 1/3 (PC1/3), encoded by the PCSK1 gene, is expressed in neuronal and (entero)endocrine cell types, where it cleaves and hence activates a number of protein precursors that play a key role in energy homeostasis. Loss-of-function mutations in PCSK1 cause a recessive complex endocrinopathy characterized by malabsorptive diarrhea and early-onset obesity. Despite the fact that neonatal malabsorptive diarrhea is observed in all patients, it has remained understudied. The aim of this study was to investigate the enteroendocrine pathologies in a male patient with congenital PCSK1 deficiency carrying the novel homozygous c.1034A>C (p.E345A) mutation. This patient developed malabsorptive diarrhea and metabolic acidosis within the first week of life, but rapid weight gain was observed after total parenteral nutrition, and he displayed high proinsulin levels and low adrenocorticotropin. In vitro analysis showed that the p.E345A mutation in PC1/3 resulted in a (near) normal autocatalytic proPC1/3 processing and only partially impaired PC1/3 secretion, but the processing of a substrate in trans was completely blocked. Immunohistochemical staining did not reveal changes in the proGIP/GIP and proglucagon/GLP-1 ratio in colonic tissue. Hence, we report a novel PCSK1 deficient patient who, despite neonatal malabsorptive diarrhea, showed a normal morphology in the small intestine. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

10 pages, 252 KiB  
Article
NGS Gene Panel Analysis Revealed Novel Mutations in Patients with Rare Congenital Diarrheal Disorders
by Maria Valeria Esposito, Marika Comegna, Gustavo Cernera, Monica Gelzo, Lorella Paparo, Roberto Berni Canani and Giuseppe Castaldo
Diagnostics 2021, 11(2), 262; https://doi.org/10.3390/diagnostics11020262 - 8 Feb 2021
Cited by 7 | Viewed by 2638
Abstract
Congenital diarrheal disorders (CDDs) are early-onset enteropathies generally inherited as autosomal recessive traits. Most patients with CDDs require rapid diagnosis as they need immediate and specific therapy to avoid a poor prognosis, but their clinical picture is often overlapping with a myriad of [...] Read more.
Congenital diarrheal disorders (CDDs) are early-onset enteropathies generally inherited as autosomal recessive traits. Most patients with CDDs require rapid diagnosis as they need immediate and specific therapy to avoid a poor prognosis, but their clinical picture is often overlapping with a myriad of nongenetic diarrheal diseases. We developed a next-generation sequencing (NGS) panel for the analysis of 92 CDD-related genes, by which we analyzed patients suspect for CDD, among which were (i) three patients with sucrose-isomaltase deficiency; (ii) four patients with microvillous inclusion disease; (iii) five patients with congenital tufting enteropathy; (iv) eight patients with glucose-galactose malabsorption; (v) five patients with congenital chloride diarrhea. In all cases, we identified the mutations in the disease-gene, among which were several novel mutations for which we defined pathogenicity using a combination of bioinformatic tools. Although CDDs are rare, all together, they have an incidence of about 1%. Considering that the clinical picture of these disorders is often confusing, a CDD-related multigene NGS panel contributes to unequivocal and rapid diagnosis, which also reduces the need for invasive procedures. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
9 pages, 833 KiB  
Review
Congenital Lactase Deficiency: Mutations, Functional and Biochemical Implications, and Future Perspectives
by Dalanda Wanes, Diab M. Husein and Hassan Y. Naim
Nutrients 2019, 11(2), 461; https://doi.org/10.3390/nu11020461 - 22 Feb 2019
Cited by 32 | Viewed by 11231
Abstract
Congenital lactase deficiency (CLD) is a severe autosomal recessive genetic disorder that affects the functional capacity of the intestinal protein lactase-phlorizin hydrolase (LPH). This disorder is diagnosed already during the first few days of the newborn’s life due to the inability to digest [...] Read more.
Congenital lactase deficiency (CLD) is a severe autosomal recessive genetic disorder that affects the functional capacity of the intestinal protein lactase-phlorizin hydrolase (LPH). This disorder is diagnosed already during the first few days of the newborn’s life due to the inability to digest lactose, the main carbohydrate in mammalian milk. The symptoms are similar to those in other carbohydrate malabsorption disorders, such as congenital sucrase-isomaltase deficiency, and include severe osmotic watery diarrhea. CLD is associated with mutations in the translated region of the LPH gene that elicit loss-of-function of LPH. The mutations occur in a homozygote or compound heterozygote pattern of inheritance and comprise missense mutations as well as mutations that lead to complete or partial truncations of crucial domains in LPH, such as those linked to the folding and transport-competence of LPH and to the catalytic domains. Nevertheless, the identification of the mutations in CLD is not paralleled by detailed genotype/protein phenotype analyses that would help unravel potential pathomechanisms underlying this severe disease. Here, we review the current knowledge of CLD mutations and discuss their potential impact on the structural and biosynthetic features of LPH. We also address the question of whether heterozygote carriers can be symptomatic for CLD and whether genetic testing is needed in view of the severity of the disease. Full article
(This article belongs to the Special Issue Lactose Intolerance Update)
Show Figures

Figure 1

Back to TopTop